质量分数为20%时,冲击强度接近700J/m;PBT提高了PC/MBS-g-GMA共混物的MFR,使加工性能得到改善。1.4聚甲醛(POM)POM/PE–LD-g-SiO2复合材料天津市口腔医院[38]通过熔融接枝及熔融共混法制备了POM/低密度聚乙烯接枝纳米二氧化硅(POM/PE–LD-g-SiO2)复合材料。当PE–LD-g-SiO2的质量分数为4%时,复合材料的力学和热性能均达到值;而摩擦系数和体积磨损量逐渐降低,当PE–LD-g-SiO2的质量分数为6%时,达到最小值。1.5饱和和57%,弯曲强度和弯曲弹性模量分别达到76.24MPa和3.40GPa。阻燃ABS/PTFE株洲时代新材料科技股份有限公司[4]考察了聚四氟乙烯(PTFE)对阻燃ABS性能的影响。结果表明,在溴代三嗪与三氧化二锑阻燃体系下,PTFE的加入可以明显减少材料的燃烧时间,提高材料的阻燃性能。苯并噁嗪与微胶囊红磷及丁腈橡胶阻燃ABS华南理工大学采用苯并噁嗪(BOZ)与微胶囊化红磷(MRP)复配制备了无卤阻燃ABS。当BOZ/MRP质量比为3∶2且两者总质量分数为20%时PEEK聚醚醚酮齿轮新选择,新享受!反应,且EGMA的乙烯基长链与PE–LLD具有结构相似性,明显改善PA6和PE–LLD共混两相的界面相容性,PA6/PE–LLD/EGMA合金的力学性能得到显著提高。PA12导热导电复合材料上海交通大学[30]以导热碳材料(CC)为导热导电填料,采用熔融混合的方法制备了PA12导热导电复合材料。当CC的体积分数为47.4%时,复合材料的热导率达到3.425W/(m·K),电阻率达到0.10Ω·cm,热变形温度提高了77.1℃,同时,材料仍然保持与纯PA12相当的拉伸强度。等计算结果,同时这些计算结果还可以用来为传统的齿轮强度计算公式中对齿轮强度有影响各种系数做验证。在齿轮失效中疲劳断裂是主要的一种,有统计结果表明齿轮疲劳断齿故障形式约占齿轮失效的32.8%[2]。对齿轮进行疲劳计算分析,可以应用有限元软件的分析结果,再借助计算机疲劳分析软件,如MSC.Fatigue、FE-Safe等分析齿轮的使用寿命并对下一步齿轮设计提高齿轮寿命提供依据。上述疲劳有限元分析方法为研究齿轮疲劳破坏,并进一步PEEK聚醚醚酮齿轮新选择,新享受!起静电而干扰无线通讯,而用碳纳米管增强的工程塑料可在大幅度提高材料力学性能的同时解决这一问题。碳纳米管已经在一些国家获得了实际应用,例如美国国家航空与宇宙航行局(NASA)和休斯敦的iRce大学正准备将碳纳米管与工程塑料复合首批应用于航天领域;美国RTP公司开发了一系列碳纳米管配混料,目前可供配混的工程塑料有PA、聚碳酸醋(Pc)、Pc/ABS合金、PET(PBT)、PSP、PEI和PEEK,其它工程塑料的配混料也在开发之中。2.4工程塑料/金属(
须进行强度计算分析。为了对其进行计算分析,需要首先建立精确的几何模型,再对其进行精确的网格划分,最后添加求解部分及边界条件等建立用于计算分析的有限元模型,最终在计算模拟之后,对计算结果进行分析评价。从这些分析结果中可以准确地得到齿轮轮齿应力和变形在轮齿上的分布特点及其变化规律等有意义的结论。上述精确计算分析齿轮应力和变形结论,是轮齿承载能力的校核手段和方法,同时这些结论也是对齿轮系统进行减振降噪、PEEK聚醚醚酮齿轮新选择,新享受!