随着人工智能在工业领域的渗透,出现了许多在消费领域所不曾遇到的挑战。当下,西门子人工智能研发团队正致力于开展一系列创新实践,推动前沿技术的成果转化。
“我们希望提供用得起、用得好的工业人工智能解决方案,将工业数据的巨大隐藏价值变得可见且可得。”西门子中国研究院大数据分析研发部总监田鹏伟说道。
一方面,工业领域普遍故障样本少,数据打标依赖行业专家,成本高昂。西门子研发团队将神经网络和传统贝叶斯方法相结合,尽可能把工业领域的先验知识融入模型,减少对样本数据量的依赖,开展基于小样本数据的有效学习。与此同时,团队还通过主动学习技术来降低数据打标的成本,先基于算法筛选出有用的未标记样本,再交由专家进行标记,只需要和专家进行少量交互即可高效完成模型训练。
另一方面,工业人工智能的巨大潜力与高应用门槛似乎是一对无法解决的矛盾。西门子研发团队前瞻性地探索基于元学习等技术的自动机器学习应用,让系统根据当前数据集的特征帮助使用者快速选择算法模型和参数配置,降低专业性要求,这将大力助推人工智能在工业中的普及。
美国辛辛那提大学工业人工智能中心主任、《工业人工智能》作者李杰教授表示:“人工智能在工业领域的真正价值是替人找到工业系统中不可见世界的参数的关系与变化,预测并有效避免问题的发生 。当工业人工智能渗透愈发深入,当它的潜力在工业智能化进程中被充分释放时,整个工业应该是 ‘无忧’ 的。”
作为工业人工智能的理想赋能者,西门子正在加速这一天的到来,让企业不再为运维成本、生产瓶颈以及未来隐患而担忧,让工业变得更具智慧、更加安全。