失效,将很有必要在目前的要求下对过去的齿轮强度计算方法进行重新估量,从而在新的形势下能更精确地计算出齿轮轮齿的受力及变形的情况,为齿轮设计提供指导。国内外学者对齿轮强度的影响因素及齿轮设计准则的改进方法进行了大量的研究。1986年,黄瑞清[14]探讨了齿轮基本参数及加工、润滑等技术指标对齿轮承载能力的影响。1987年,李映凯[15]分析了齿轮安装误差,制造工序中精度破坏等因素引起的附加载荷对齿轮强度的影响,并指出汽车内饰用PP改性料,研究了PP种类及用量、增韧剂用量、滑石粉粒径等对材料性能的影响。优化实验配方制得的PP改性料满足汽车内饰件性能的要求。汽车仪表板胡丽等[4]采用悬浮聚合法制备了N-苯基马来酰亚胺(NPMI)、苯乙烯(St)、丙烯腈(AN)三元共聚物(SMIA)及NPMI、St二元共聚物(SMI)。再将SMI和SMIA分别与丙烯腈-丁二烯-苯乙烯塑料(ABS)熔融共混、挤出、造粒,得到耐热改性ABS。研究结果表明,该耐热改性ABS具有良好的耐热性,拉伸强Y38滚齿机尼龙齿轮耐腐蚀耐磨损性能优异料的刚性和强度也逐步增大,但韧性下降;当晶须质量分数为8%时,弯曲弹性模量增加61%,当质量分数为10%时,弯曲弹性模量增加85%。POM的耐磨改性北京化工大学[54]用聚四氟乙烯(PTFE)、石墨、MoS23种耐磨改性剂制备POM耐磨材料。3种耐磨改性剂改性POM耐磨材料的摩擦磨损性能均有不同程度的改善,PTFE改善效果,当PTFE质量分数为8%时,材料摩擦系数为0.21,较纯POM降低38%,磨损体积为5×10–4cm3,较纯POM降低一个数量级。玻璃微大轮的加工参数可以作为以后制作大轮模具的依据。本文的研究的齿轮副是尼龙材料的大轮,齿数为34,金属材料的小轮,齿数为11,研究的主要内容如下:1根据齿轮啮合原理和局部综合法理论,研究满足齿轮正确啮合的条件。确粘弹性是在力学和材料学之间衍生出来的,它是连续介质力学研究的重要组成部分。它的研究对象一般是一些具有流体性质的粘弹性固体材料,比如塑料、尼龙等聚合物、地质材料、高温下的金属材料等。尼龙材料不同于金Y38滚齿机尼龙齿轮耐腐蚀耐磨损性能优异反应,且EGMA的乙烯基长链与PE–LLD具有结构相似性,明显改善PA6和PE–LLD共混两相的界面相容性,PA6/PE–LLD/EGMA合金的力学性能得到显著提高。PA12导热导电复合材料上海交通大学[30]以导热碳材料(CC)为导热导电填料,采用熔融混合的方法制备了PA12导热导电复合材料。当CC的体积分数为47.4%时,复合材料的热导率达到3.425W/(m·K),电阻率达到0.10Ω·cm,热变形温度提高了77.1℃,同时,材料仍然保持与纯PA12相当的拉伸强度。
属材料,它不符合胡克定律,其力学性能呈现出粘弹性,它的力学模型和有关参数都与金属材料不同。由于材料的力学性能与施力的方法和施力的时间有关,这就使它的形变没有规律可循,非常复杂。尼龙材料静态粘弹性能的表现形式有蠕变和应力松弛,当工作温度升高、轮齿之间的摩擦和碰撞等因素引起轮齿温度升高时,尼龙材料由于粘弹性产生的变形就变得更加明显。就尼龙齿轮而言,轮齿的抗疲劳、抗冲击、耐磨、减振和降噪等性能都与材料的Y38滚齿机尼龙齿轮耐腐蚀耐磨损性能优异