产品简介
西门子6ES7313-6BF03-0AB0中央控制器
西门子6ES7313-6BF03-0AB0中央控制器
产品价格:¥1000
上架日期:2018-05-30 23:39:44
产地:德国
发货地:上海松江
供应数量:不限
最少起订:1台
浏览量:345
资料下载:暂无资料下载
其他下载:暂无相关下载
详细说明

    西门子6ES7313-6BF03-0AB0中央控制器 西门子6ES7313-6BF03-0AB0中央控制器



      

    SIMATIC S7-300 的应用领域包括: 特殊机械, 纺织机械, 包装机械, 一般机械设备制造, 控制器制造, 机床制造, 安装系统, 电气与电子工业及相关产业。 多种性能等级的 CPU,具有用户友好功能的全系列模块,可允许用户根据不同的应用选取相应模块。任务扩展时,可通过使用附加模块随时对控制器进行升级。 SIMATIC S7-300 是一个通用的控制器: 具有高电磁兼容性和抗震性,可最大限度地用于工业领域。 S7-300F SIMATIC S7-300F 故障安全自动化系统可使用在对安全要求较高的设备中。其可对立即停车过程进行控制,因此不会对人身、环境造成损害。 S7-300F 满足下列安全要求: 要求等级 AK 1 - AK 6 符合 DIN V 19250/DIN V VDE 0801 安全要求等级 SIL 1 - SIL 3 符合 IEC 61508 类别 1 - 4 符合 EN 954-1 另外,标准模块还可用在 S7-300F 及故障安全模块中。因此它可以创建一个全集成的控制系统,在非安全相关和安全相关任务共存的工厂中使用。使用相同的标准工具对整个工厂进行组态和编程。 设计 S7-300 一般步骤 S7-300自动化系统采用模块化设计。

      它拥有丰富的模块,且这些模块均可以独立地组合使用。 一个系统包含下列组件: CPU: 不同的 CPU 可用于不同的性能范围,包括具有集成 I/O 和对应功能的 CPU 以及具有集成 PROFIBUS DP、PROFINET 和点对点接口的 CPU。 用于数字量和模拟量输入/输出的信号模块 (SM)。 用于连接总线和点对点连接的通信处理器 (CP)。 用于高速计数、定位(开环/闭环)及 PID 控制的功能模块(FM)。 根据要求,也可使用下列模块: 用于将 SIMATIC S7-300 连接到 120/230 V AC 电源的负载电源模块(PS)。 接口模块 (IM),用于多层配置时连接中央控制器 (CC) 和扩展装置 (EU)。 通过分布式中央控制器 (CC) 和 3 个扩展装置 (EU),SIMATIC S7-300 可以操作多达 32 个模块。

     

    6ES7 312-1AE13-0AB0 CPU312,32K内存
    6ES7 312-1AE14-0AB0
    6ES7 312-5BE03-0AB0
    6ES7312-5BF04-0AB0 CPU312C,32K内存 10DI/6DO
    6ES7 313-5BF03-0AB0
    6ES7313-5BG04-0AB0 CPU313C,64K内存 24DI/16DO / 4AI/2AO
    6ES7 313-6BF03-0AB0
    6ES7313-6BG04-0AB0 CPU313C-2PTP,64K内存 16DI/16DO
    6ES7 313-6CF03-0AB0
    6ES7313-6CG04-0AB0 CPU313C-2DP,64K内存 16DI/16DO
    6ES7 313-6CF03-0AM0 CPU313C-2DP,64K内存 16DI/16DO组合件(6ES7 313-6CF03-0AB0+6ES7 392-1AM00-0AA0)
    6ES7 314-1AG13-0AB0 CPU314,96K内存
    6ES7 314-1AG14-0AB0 CPU314,128K内存
    6ES7 314-6BG03-0AB0
    6ES7314-6BH04-0AB0 CPU314C-2PTP 96K内存 24DI/16DO / 4AI/2AO
    6ES7 314-6CG03-0AB0
    6ES7314-6CH04-0AB0 CPU314C-2DP 96K内存 24DI/16DO / 4AI/2AO
    6ES7 314-6EH04-0AB0 CPU314C-2PN/DP 192K内存/24DI/16DO/ 4AI/2AO
    6ES7 314-6CG03-9AM0 CPU314C-2DP 96K内存 24DI/16DO / 4AI/2AO组合件(6ES7 314-6CG03-0AB0+6ES7 392-1AM00-0AA0*2)
    6ES7 315-2AG10-0AB0 CPU315-2DP, 128K内存
    6ES7 315-2AH14-0AB0 CPU315-2DP, 256K内存
    6ES7 315-2EH13-0AB0
    6ES7315-2EH14-0AB0 CPU315-2 PN/DP, 256K内存
    6ES7 317-2AJ10-0AB0
    6ES7317-2AK14-0AB0 CPU317-2DP,512K内存
    6ES7 317-2EK13-0AB0
    6ES7317-2EK14-0AB0 CPU317-2 PN/DP,1MB内存
    6ES7 318-3EL00-0AB0
    6ES7318-3EL01-0AB0 CPU319-3PN/DP,1.4M内存
    内存卡
    6ES7 953-8LF20-0AA0 SIMATIC Micro内存卡 64kByte(MMC)
    6ES7953-8LF30-0AA0
    6ES7 953-8L20-0AA0 SIMATIC Micro内存卡128KByte(MMC)
    6ES7953-8LG30-0AA0 
    6ES7 953-8LJ20-0AA0 SIMATIC Micro内存卡512KByte(MMC)
    6ES7953-8LJ30-0AA0
    6ES7 953-8LL20-0AA0 SIMATIC Micro内存卡2MByte(MMC)
    6ES7953-8LL31-0AA0
    6ES7 953-8LM20-0AA0 SIMATIC Micro内存卡4MByte(MMC)
    6ES7953-8LM31-0AA0
    6ES7 953-8LP20-0AA0 SIMATIC Micro内存卡8MByte(MMC)
    6ES7953-8LP31-0AA0
    开关量模板
      开入模块(16点,24VDC)
    6ES7 321-1BH02-9AJ0 开入模块(16点,24VDC)组合件                (6ES7 321-1BH02-0AA0+6ES7 392-1AJ00-0AA0)
    6ES7 321-1BH10-0AA0 开入模块(16点,24VDC)
    6ES7 321-1BH50-0AA0 开入模块(16点,24VDC,源输入)
    6ES7 321-1BH50-9AJ0 开入模块(16点,24VDC,源输入)组合件 (6ES7 321-1BH50-0AA0+6ES7 392-1AJ00-0AA0)
    6ES7 321-1BL00-0AA0 开入模块(32点,24VDC)
    6ES7 321-1BL00-9AM0 开入模块(32点,24VDC)组合件          (6ES7 321-1BL00-0AA0+6ES7 392-1AM00-0AA0)    
    6ES7 321-7BH01-0AB0 开入模块(16点,24VDC,诊断能力)
    6ES7 321-1EL00-0AA0 开入模块(32点,120VAC)
    6ES7 321-1FF01-0AA0 开入模块(8点,120/230VAC)
    6ES7 321-1FF10-0AA0 开入模块(8点,120/230VAC)与公共电位单独连接
    6ES7 321-1FH00-0AA0 开入模块(16点,120/230VAC)
    6ES7 321-1FH00-9AJ0 开入模块(16点,120/230VAC)           (6ES7 321-1FH00-0AA0+6ES7 392-1AJ00-0AA0)
    6ES7 321-1CH00-0AA0 开入模块(16点,24/48VDC)
    6ES7 321-1CH20-0AA0 开入模块(16点,48/125VDC)
    6ES7 321-1BP00-0AA0 光电隔离,每组 16,64 DI,DC 24V,3MS,漏/源
    6ES7 322-1BP00-0AA0 光电隔离,每组 16,64 DO,DC 24V,0.3A(源),总电流2A/组
    6ES7 322-1BH01-0AA0 开出模块(16点,24VDC)
    6ES7 322-1BH01-9AJ0 开出模块(16点,24VDC)                (6ES7 322-1BH01-0AA0+6ES7 392-1AJ00-0AA0)
    6ES7 322-1BH10-0AA0 开出模块(16点,24VDC)高速
    6ES7 322-1CF00-0AA0 开出模块(8点,48-125VDC)
    6ES7 322-8BF00-0AB0 开出模块(8点,24VDC)诊断能力
    6ES7 322-5GH00-0AB0 开出模块(16点,24VDC,独立接点,故障保护)
    6ES7 322-1BL00-0AA0 开出模块(32点,24VDC)
    6ES7 322-1BL00-9AM0 开出模块(32点,24VDC)               (6ES7 322-1BL00-0AA0+6ES7 392-1AM00-0AA0)    
    6ES7 322-1FL00-0AA0 开出模块(32点,120VAC/230VAC)
    6ES7 322-1BF01-0AA0 开出模块(8点,24VDC,2A)
    6ES7 322-1FF01-0AA0 开出模块(8点,120V/230VAC)
    6ES7 322-5FF00-0AB0 开出模块(8点,120V/230VAC,独立接点)
    6ES7 322-1HF01-0AA0 开出模块(8点,继电器,2A)
    6ES7 322-1HF01-9AJ0 开出模块(8点,继电器,2A)             (6ES7 322-1HF01-0AA0+6ES7 392-1AJ00-0AA0)
    6ES7 322-1HF10-0AA0 开出模块(8点,继电器,5A,独立接点)
    6ES7 322-1HH01-0AA0 开出模块(16点,继电器)DO
    6ES7 322-1HH01-9AJ0 开出模块(16点,继电器)                 (6ES7 322-1HH01-0AA0+6ES7 392-1AJ00-0AA0)
    6ES7 322-5HF00-0AB0 开出模块(8点,继电器,5A,故障保护)
    6ES7 322-1FH00-0AA0 开出模块(16点,120V/230VAC)
    6ES7 323-1BH01-0AA0 8点输入,24VDC;8点输出,24VDC模块
    6ES7 323-1BL00-0AA0 16点输入,24VDC;16点输出,24VDC模块
    6ES7 323-1BL00-9AM0 16点输入,24VDC;16点输出,24VDC模块  (6ES7 323-1BL00-0AA0+6ES7 392-1AM00-0AA0)
    模拟量模板
    6ES7 331-7KF02-0AB0 模拟量输入模块(8路,多种信号)
    6ES7 331-7KF02-9AJ0 模拟量输入模块(8路,多种信号)         (6ES7 331-7KF02-0AB0+6ES7 392-1AJ00-0AA0)
    6ES7 331-7KB02-0AB0 模拟量输入模块(2路,多种信号)
    6ES7 331-7KB02-9AJ0 模拟量输入模块(2路,多种信号)         (6ES7 331-7KB02-0AB0+6ES7 392-1AJ00-0AA0)
    6ES7 331-7NF00-0AB0 模拟量输入模块(8路,15位精度)
    6ES7 331-7NF00-9AM0 模拟量输入模块(8路,15位精度)         (6ES7 331-7NF00-0AB0+6ES7 392-1AM00-0AA0)
    6ES7 331-7NF10-0AB0 模拟量输入模块(8路,15位精度)4通道模式
    6ES7 331-7HF01-0AB0 模拟量输入模块(8路,14位精度,快速)
    6ES7 331-1KF02-0AB0 模拟量输入模块(8路, 13位精度)
    6ES7 331-1KF02-9AM0 模拟量输入模块(8路, 13位精度)           (6ES7 331-1KF02-0AB0+6ES7 392-1AM00-0AA0)
    6ES7 331-7PF01-0AB0 8路模拟量输入,16位,热电阻
    6ES7 331-7PF01-9AM0 8路模拟量输入,16位,热电阻             (6ES7 331-7PF01-0AB0+6ES7 392-1AM00-0AA0)
    6ES7 331-7PF11-0AB0 8路模拟量输入,16位,热电偶
    6ES7 331-7PF11-9AM0 8路模拟量输入,16位,热电偶             (6ES7 331-7PF01-0AB0+6ES7 392-1AM00-0AA0)
    6ES7 332-5HD01-0AB0 模拟输出模块(4路) 
    6ES7 332-5HD01-9AJ0 模拟输出模块(4路)                      (6ES7 332-5HD01-0AB0+6ES7 392-1AJ00-0AA0)
    6ES7 332-5HB01-0AB0 模拟输出模块(2路) 
    6ES7 332-5HB01-9AJ0 模拟输出模块(2路)                     (6ES7 332-5HB01-0AB0+6ES7 392-1AJ00-0AA0)
    6ES7 332-5HF00-0AB0 模拟输出模块(8路) 
    6ES7 332-5HF00-9AM0 模拟输出模块(8路)                          (6ES7 332-5HF00-0AB0+6ES7 392-1AM00-0AA0)
    6ES7 332-7ND02-0AB0 模拟量输出模块(4路,15位精度)
    6ES7 334-0KE00-0AB0 模拟量输入(4路RTD)/模拟量输出(2路)
    6ES7 334-0CE01-0AA0 模拟量输入(4路)/模拟量输出(2路)

     所有模块均在外壳中运行,并且无需风扇。 SIPLUS 模块可用于扩展的环境条件: 适用于 -25 至 +60℃ 的温度范围及高湿度、结露以及有雾的环境条件。防直接日晒、雨淋或水溅,在防护等级为 IP20 机柜内使用时,可直接在汽车或室外建筑使用。不需要空气调节的机柜和 IP65 外壳。 设计 简单的结构使得 S7-300 使用灵活且易于维护: 安装模块: 只需简单地将模块挂在安装导轨上,转动到位然后锁紧螺钉。 集成的背板总线: 背板总线集成到模块里。模块通过总线连接器相连,总线连接器插在外壳的背面。 模块采用机械编码,更换极为容易: 更换模块时,必须拧下模块的固定螺钉。按下闭锁机构,可轻松拔下前连接器。前连接器上的编码装置防止将已接线的连接器错插到其他的模块上。 现场证明可靠的连接: 对于信号模块,可以使用螺钉型、弹簧型或绝缘刺破型前连接器。 

      TOP 连接: 为采用螺钉型接线端子或弹簧型接线端子连接的 1 线 - 3 线连接系统提供预组装接线另外还可直接在信号模块上接线。 规定的安装深度: 所有的连接和连接器都在模块上的凹槽内,并有前盖保护。因此,所有模块应有明确的安装深度。 无插槽规则: 信号模块和通信处理器可以不受限制地以任何方式连接。系统可自行组态。 扩展 若用户的自动化任务需要 8 个以上的 SM、FM 或 CP 模块插槽时,则可对 S7-300(除 CPU 312 和 CPU 312C 外)进行扩展: 中央控制器和3个扩展机架最多可连接32个模块: 总共可将 3 个扩展装置(EU)连接到中央控制器(CC)。每个 CC/EU 可以连接八个模块。 通过接口模板连接: 每个 CC / EU 都有自己的接口模块。在中央控制器上它总是被插在 CPU 旁边的插槽中,并自动处理与扩展装置的通信。 通过 IM 365 扩展: 1 个扩展装置最远扩展距离为 1 米;电源电压也通过扩展装置提供。 通过 IM 360/361 扩展: 3 个扩展装置, CC 与 EU 之间以及 EU 与 EU 之间的最远距离为 10m。 单独安装: 对于单独的 CC/EU,也能够以更远的距离安装。两个相邻 CC/EU 或 EU/EU 之间的距离:长达 10m。 灵活的安装选项: CC/EU 既可以水平安装,也可以垂直安装。这样可以最大限度满足空间要求。 通信

    通过增加服务质量机制,成熟的以太网通信标准得到进一步优化。得益于新的IEEE标准,以太网将能在预定义的最长时限内,可靠地进行多协议(包括实时协议)并行传输。工业用户和汽车制造商已经准备好使用新标准。

    机械臂动作整齐划一,分毫不差,灵活自如地摆动着机械爪。两个工业机器人跳着优雅的机械芭蕾,让人觉察不到哪怕一丝迟延。这样的完美协调,归功于一项正在揭开工业通信新纪元的技术:时间敏感网络(TSN)。

    过去40年,在通过电缆传输数字数据方面,以太网已是无可争议的领袖。西门子从一开始就积极投身这个领域,并推出了市场上首个工业以太网网络:SINEC H1。自此之后,以太网不单用于办公室,尤其还用于工业制造环境。然而,以太网标准从诞生之初就存在一个问题——它不能保证发送方发出的数据包能在一定时间内送达接收方。对于工业控制器,这样的情况是不能容忍的。要知道,机器的可靠运行,依赖于传感器测量数据和控制信号在短时间内送达目的地。它们需要时延低至毫秒级的实时通信——这项任务超出了以太网的设计初衷。

    一个重要发展:未来,一切都将建立在支持TSN的以太网之上,可以按要求实现并行操作。

    正因如此,想要在以太网上进行实时通信的用户必须部署扩展性技术,如应用广泛的Profinet标准。举例来讲,在机器中,这个标准通过向以太网添加实时数据传输能力,将传感器、执行机构和驱动器等连接至中央控制器,从而实现包括精准控制伺服驱动器的应用。西门子Simatic控制器业务部门的系统管理负责人Matthias Gärtner解释道,“然而,要做到这一点,通常需要在连接设备内加装特殊硬件组件。不仅如此,各种实时工业以太网解决方案不能在同一个以太网上并行运行。”

    很快,这个问题将成为历史,因为负责为各种系统制定标准的电气和电子工程师协会(IEEE)已通过添加实时通信机制扩展了以太网,从而满足这一迫切需求。这些机制包括时间控制传输、同步和带宽预留等。通过这种方式,IEEE借助TSN提高了服务质量。这样一来,以太网将能够向连接的所有支持这些扩展标准的设备提供相同的时间信息。最终,整个网络将实现精确同步。除此之外,预留协议可确保按照预定义的时间表,通过所有中间交换机将数据包从发送方传送至目的地。TSN标准还将有关网络的拓扑纳入考虑,即,网络部署是星型、环型,还是线型,以及发送方与接收方之间的交换机的数量。此外,TSN标准还包含无缝冗余流程。

    引起工业界普遍关注:除在机器内部进行实时通信之外,现在还可以在机器之间实现实时通信,从而提高整个工厂系统的吞吐量。

    单个网络传输所有数据

    Gärtner指出,“对于以太网而言,这是一个历史性时刻。未来,将有可能使用面向Profinet及其他基于TSN的实时工业通信协议的标准硬件组件。这将实现在一个网络上同时传输所有数据,包括实时信息。”用户将自然而然地获益于标准以太网带宽稳步提高,随着自动化系统的IP连接与日俱增,带宽需求将不断增长。此外,TSN交换机坚决将交换资源预留用于所请求的实时通信需求,确保不再因缓冲器溢出而导致数据丢失,因此,通信将更加稳健。

    除对通过Profinet实现机器内部实时通信的需求日益增长之外,对不同机器之间的确定性(即预定的)数据交换的需求也越来越大。譬如,同时对一个工件执行操作的协作机器人,它们必须精确协调彼此的动作。现在,具备PubSub(发布/订阅)扩展的OPC UA标准已在这个领域站稳脚跟。它也可以采用TSN以太网作为传输介质。Gärtner表示,“预计,TSN以太网将被引入整个工业制造流程。不仅如此,譬如,汽车制造商也希望使用这种新标准来发送倒车后视摄像头生成的大量数据,或者实现无人驾驶。无人驾驶的实现,离不开包含服务质量机制的车载网络。”现在,时机已经成熟。首个TSN组件现已投放市场,在2018年德国汉诺威工业博览会上,西门子将使用实际的TSN产品来演示基于OPC UA PubSub的确定性机器间通信。这些产品将于今年年底开始销售,届时,TSN以太网将最终来到数字化和“工业4.0”的现代化世界。

    颗粒物是最棘手的空气污染物之一,因为它会引发严重的呼吸道疾病。现在,来自西门子楼宇科技集团的专家开发出一种能够精确测定室内颗粒物浓度的传感器。这种传感器不仅特别适合在中国和印度等颗粒物浓度较高的区域使用,同时亦适用于欧洲各大城市。将这种传感器集成到现有的楼宇自控系统中,有助于显著改善室内空气质量。

    颗粒物(PM)来自排气管、住宅烟囱和发电站,以及明火产生的烟雾,它是我们身边最危险的空气污染物之一。多年来,环保部门一直密切监测颗粒物,因为它会导致人们罹患肺部疾病。直径小于2.5微米的细小颗粒(亦称PM2.5)的危险性更为显著,人们在呼吸或吸烟时,会将它们深深吸入肺部。欧洲环境署估计,每年仅欧洲就有超过40万人死于PM2.5引起的肺部疾病。

    在中国和印度等新兴经济体国家,情况更为严峻。据医学杂志《柳叶刀》最近发表的一篇文章,尽管目前的欧盟标准是每立方米空气中的颗粒物含量不超过25微克,但在新兴经济体国家,许多城市的平均颗粒物浓度高达这一限值的4倍以上。因此毫不令人意外的是,在中国,颗粒物传感器是最为畅销的个人电子产品之一。直到现在,这种类型的传感器还不可用于商业建筑物自控系统。位于瑞士楚格小镇的西门子楼宇科技集团楼宇自控产品市场经理Jonathan Miles Copley表示,“中国大城市的空气质量极为糟糕,因此,西门子中国建议研发这样的传感器,以集成到我们的楼宇自控系统中。”于是便有了刚刚投放市场的PM2.5传感器。

    测量多种类别颗粒物

    新的传感器与烟盒一般大小,可安装在墙上,定期检查室内空气中的颗粒物浓度。位于传感器内侧的一个小风扇将空气吸入。一个激光二极管通过测定颗粒物的光散射强度,记录精确的PM2.5浓度。Copley指出,“这种传感器经专门校准,以测量重要的PM2.5值。它也可估算出PM10的浓度。”PM10是直径小于10微米的颗粒物,大小接近于引发过敏的花粉,但不像PM2.5那么危险。尽管如此,它们仍然对肺部构成负担,因而也被记录下来。然后,传感器可在屏幕上以不同颜色显示这两类颗粒物的当前值——颜色取决于测得的浓度。这些值也将通过数据线,发送至楼宇自控系统。

    在中国的首都北京,颗粒物污染是的一个严重问题。

    目前,西门子楼宇科技集团的专家正在推出不同的App,以配合这种传感器的使用,确保改善空气质量。他们打算将这种传感器集成到现有的楼宇自控系统中,以实现这个目标。这种传感器可以与空气净化器相结合,因为在中国的许多写字楼,空气净化器已经成为标配,被污染的室内空气经它们过滤之后,再被送回办公室。未来,这些传感器将能根据PM2.5浓度来开关空气净化器,而不是像现在这样让它们不间断运行。这些传感器仅在必要时启动空气净化器,从而大幅节电。

    此外,西门子楼宇科技集团的专家也在开发App,用于将颗粒物传感器与二氧化碳传感器连接起来,以便控制建筑物的通风系统。在封闭的房间里,人体呼出的二氧化碳会不断聚积。如今,这种情况下常常使用二氧化碳传感器来启动通风系统,向室内泵送新鲜空气。Copley说:“在许多大城市,空气中的颗粒物浓度非常高,因而不适宜进行通风。这时候,颗粒物传感器可以阻止通风。”

    轻松更换激光模块

    除精确测量最细小的颗粒物之外,对用户而言,西门子颗粒传感器还具备其他优点,譬如,在操作方面。随着时间的推移,颗粒物传感器吸入的空气中携带的污垢积聚在激光元件上。通常,整个传感器要断电后拆卸,再更换成新的装置。而西门子楼宇科技集团研发的这种传感器则仅需更换小小的激光模块。Copley说:“这就如同为电视遥控器更换电池一样快捷。”这种传感器还提供经济模式,所以不必频繁更换激光模块。在这种模式下,它每个小时仅执行规定次数的测量,这无形中延长了污垢积聚周期。

    激光模块的使用寿命亦相应地得到延长。这种传感器还具备快速启动功能,允许用户随时获取空气质量信息。当用户靠近传感器一米以内时,它将被唤醒并快速读取数据。Copley说:“然后,短短数秒钟内,屏幕上将显示当前颗粒物浓度值。这种超快速空气分析能力,是我们的装置的独特特性。”

    Copley认为,除了中国、印度外,其他污染严重的区域,这种传感器也能发挥作用。如今,几乎每个城市都在一定程度上面临着颗粒物浓度问题,特别是在发生逆温现象时——这时候,被污染的空气像一口大钟笼罩在城市上空。这种情况下,伦敦或斯图加特的颗粒物浓度也会一跃冲破标准限值。

    环境空气质量也是激光模块污垢积聚周期的唯一决定因素。Copley指出,在北京,模块的使用寿命可能仅为短短几年。而相同装置在瑞士阿尔卑斯山上的使用寿命则可能延长数倍。如果由传感器来控制空气净化器,那么,在中国的特大城市,空气净化器的使用寿命也将延长,同时确保室内空气如同瑞士群山中的空气一样清新。

    人工智能:优化行业运维

    智能机器的时代即将来临。西门子股份公司首席技术官兼管理委员会成员博乐仁阐释了西门子是如何利用人工智能技术推动行业转型的。

    对西门子而言,不论是燃气轮机的自主优化,还是改善对智能电网的监测,抑或为工业设施提供预测性维护,人工智能技术都蕴含着巨大潜力。我们一直在利用人工智能。在人工智能的工业应用领域,西门子具有领先优势。我们能够提供新服务,助力客户提高生产力和生产效率。

    人工智能是西门子的领先技术领域之一。30多年来,我们一直在这个领域开展深入研究。早在20世纪90年代,西门子就已为炼钢厂部署神经网络。如今,西门子有大约200位专家从事数据分析和神经网络研究。我们目前的研究重点是增强学习和深度学习等领域。这意味着什么呢?神经网络节点之间的连接类似于生物体大脑神经元之间的联系。这些联系使网络能够学习如何解读数据并作出决策。我们的深度学习技术使用了数以千计的模拟神经元和模拟神经元之间数百万个连接。

    西门子股份公司首席技术官兼管理委员会成员博乐仁

    智能数据分析

    虽然人们津津乐道于人工智能如何在围棋和扑克牌等策略游戏中大获成功,西门子却在利用人工智能来优化工业设施,并将人工智能应用于配电、电机和轨道技术等领域的各种实践中。比如说,我们正在利用人工智能来帮助我们的一位客户改善燃气轮机的运行。通过对工况及其他数据的学习,人工智能系统可以大幅降低有毒氮氧化物的排放,而不影响燃气轮机的性能或缩短其使用寿命。我们也在利用人工智能技术改善风机的运行。人工智能系统可以根据不断变化的风向自主调节转子位置,从而提高风电场的发电量。

    我们基于云的开放式物联网操作系统MindSphere也从智能数据分析中获益,如在预测性维护及借助人工智能来优化系统和设施运行。MindSphere能够分析运行数据和传感器测定数据,并由此检测出设施和自动化系统内的异常情况。

    西门子旗舰产品H级燃气轮机。人工智能技术可以大幅降低燃气轮机的有毒氮氧化物排放,而不影响其性能。

    面向工业、电网和轨道系统的人工智能技术

    通过加装智能盒子,我们将老式电机和输电系统带入数字时代。这些盒子配有传感器和用于数据传输的通信接口。通过分析这些数据,我们的人工智能系统可以推断出机器状态并检测出异常情况以实现预测性维护。

    我们不仅将人工智能技术用于工业领域,也将其用于提升电网的可靠性,包括提高电网智能化程度并为控制和监测电网的设备安装人工智能系统。如此以来,这些设备可以将电网中发生的断电进行分类并查明其位置。这个系统的特点之一是相关计算并非在数据中心内集中完成,而是在相互连接的保护设备中分散进行。

    人工智能可以让系统通过学习来优化其运行。配备基于神经网络的人工智能技术后,风电场可以充分利用不断变化的风力。

    西门子正与德国联邦铁路公司合作开展对高速列车进行预测性维护和维修的试点项目。我们的数据分析师和软件可以从车辆的运行数据中识别出特定模式和趋势。不仅如此,人工智能还助力我们为集中道岔操纵楼建造优化的控制中心。人工智能软件可以从数十亿种可能的集中道岔操纵楼硬件配置中,挑选出如可靠运行等充分满足要求的选项。




在线询盘/留言
  • 免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责,本网对此不承担任何保证责任。我们原则 上建议您选择本网高级会员或VIP会员。
    0571-87774297