GCH1 2FZ160BB100-NAA
GCH1 2LA140BH100-GD0
GCH1 2FZ140BH100-GD0
GCH1 2LA160BH100-GD0
GCH1 2FZ160BH100-GD0
GCH1 2LA32BN100-GD0
GCH1 2FZ32BN100-GD0
GCH1 2LA40BN100-GD0
GCH1 2FZ40BN100-GD0
GCH1 2LA50BN100-GD0
GCH1 2FZ50BN100-GD0
GCH1 2LA63BN100-GD0
GCH1 2FZ63BN100-GD0
GCH1 2LA80BN100-GD0
GCH1 2FZ80BN100-GD0
GCH1 2LA100BN100-GD0
GCH1 2FZ100BN100-GD0
GCH1 2LA125BN100-GD0
GCH1 2FZ125BN100-GD0
GCH1 2LA140BN100-GD0
GCH1 2FZ140BN100-GD0
GCH1 2LA160BN100-GD0
GCH1 2FZ160BN100-GD0
GCH1 2LA32BB100-ND0
GCH1 2FZ32BB100-ND0
GCH1 2LA40BB100-ND0
GCH1 2FZ40BB100-ND0
GCH1 2LA50BB100-ND0
GCH1 2FZ50BB100-ND0
GCH1 2LA63BB100-ND0
GCH1 2FZ63BB100-ND0
GCH1 2LA80BB100-ND0
GCH1 2FZ80BB100-ND0
GCH1 2LA100BB100-ND0
二外啮合齿轮泵的流里计算
(一)瞬时流里
对于液压系统来说,传动的均匀性、平稳性邳噪声都和泵的流量脉动有关。瞬时流童
分析的目的,在于了解影响翻时流里脉动的因素,以便咸小流里脉动。下面根据齿轮啮合原
理和能量守恒定律来推导齿轮泵的瞬时流里。
假如不考虑能里损失,主动齿轮每转过-个微小角度de 1两个齿轮所作的机械功dW
等于泵输出的液体体积dV和进出口压差Ap的乘积o泵的进口压力可视为零,于是压差OP
就等于排油压力Py因此
Tda+T:ldB:=dW =p2dV
(3-2-1)
式中I、I2--作用在主、从动齿轮上的扭矩;
dθ」de 2一-主、从动齿轮的旋转角。
如下图所示,x、y分别为齿轮啮合点到主动齿轮及被动齿轮中心的距离,R1 R2分
别为主动齿轮及被动齿轮的齿项圆半径作用在主动齿轮上的液压力对主动齿轮转动中心的
转矩为
(RA+x)_ 1
T=p,B(Ra-x)-
_=,P。B(R-x2)
(3-2-2)
GCH1 2FZ160BB100-NAA