(1).
继电器控制-可控硅调速阶段:在上世纪六、七十年代设备系统处于这一阶段。这一期间等离子电源多采用磁放大器式硅整流电源,驱动电机多采用直流伺服电机,先进的采用可控硅调速,落后的采用调压器调速。继电器控制的设备系统可靠性、稳定性、精确性差。
(2).简易的可编程顺序控制器应用阶段:
在上世纪八十年代末期至九十年代,PLC(可编程控制器)开始应用于设备控制系统,虽然只是顺序控制,但大大简化了硬件系统,提高了系统的可靠性。这一期间国外等离子电源已开始采用逆变焊机,国内仍采用硅整流焊机,其他方面亦变化不大。
(3).数字化控制系统阶段:进入二十一世纪后,控制技术有了飞速的发展,由于PLC由开关量的顺序控制发展到有特殊功能的模拟量的数字化控制,并采用了触摸屏人机界面作操作界面,实现了具有智能化的直接物理量设定及显示、工艺参数的自动计算及储存等控制功能,形成了数字化的控制系统,使等离子堆焊设备系统大大提升了可靠性、稳定性、精确性以及具有人性化的操作界面。在等离子电源上也采用了性能优异的逆变式弧焊电源及数字化电流调节系统;在驱动动力上采用了可精确调速,动力特性更优越的变频调速和步进电机驱动系统;在参数控制上采用了数码弧压自动控制器及数码摆动器;在喷枪冷却上采用了冷冻换热循环供水系统;在等离子焊枪上采用了喷射式送粉及研发了大功率和精细焊枪,这一系列的技术进步使粉末等离子堆焊设备系统达到了国际先进水平,并为提高工艺技术水平创造了条件。
(4).工业计算机控制系统阶段:随着粉末等离子堆焊工艺应用范围的扩大,以PLC为核心的控制系统在某些应用上已不能满足要求,而采用工业计算机控制系统,即在数控加工中心的软件基础上,进一步开发出数控堆焊软件,在实现CNC(数控)控制上优越性更突出,为粉末等离子堆焊工艺应用范围的扩大和水平的提升创造了条件。
3.工艺控制
3.1主要工艺参数
主要工艺参数有:
(1)非转移弧电流
非弧首先起过渡引燃转弧的作用,并可作为辅助热源加以利用。非弧的阳极在喷嘴孔道壁面上,电弧的大部分热量传给喷嘴,由冷却水带走,不利于喷嘴的冷却,对堆焊过程稳定性不利。因此,堆焊过程中即或保留,电流规范也不宜过大,一般在50A以下。
(2)转移弧电流
转弧是堆焊的主要热源,转弧电流是关键工艺参数。在其他参数不变的情况下,随着转弧电流的增加,电弧功率增加,加热熔化粉末及过渡到工件的热量增加,熔池温度升高,合金熔化得更充分,但熔深加深,增加了母材冲淡率。在设定好熔敷率后,要视熔池状况,调整好转移弧电流,以获得最佳的堆焊质量。
(3)转移弧电压
当喷嘴的压缩孔道长度及钨极内缩长度确定后,转弧电压随焊枪距离工件的高度几乎成线性增加,选择了转弧电压即选择了弧长。可据工件对象和对熔敷率的要术选择转弧电压,短弧堆焊利于电弧稳定和对熔池的保护;长弧堆焊利于提高电弧功率,增加熔敷率。
(4)送粉量
送粉量是指单位时间内由送粉器供给,通过焊枪送进电弧的粉量,一般用g/min表示。正常的堆焊状态,转弧电流和送粉量有正比关系,从而送粉量决定了熔敷率。送粉量受到焊枪性能,电源输出功率等因素制约。对具体的工件,送粉量有最佳的选择范围。
(5)工件移动速度
工件移动速度亦称堆焊速度,用线速度(mm/min)或转速(r/min)表示。在焊道成形尺寸确定的情况下,工件移动速度和其他参数有对应关系。在其他参数不变的情况下,提高移动速度,焊道减薄,熔深减小。最佳堆焊状态,应视具体情况调整参数之间的匹配关系。
(6)摆动参数
焊枪摆动是为了一次获得较宽的焊道。摆动参数包括:
摆幅:焊枪往复移动的宽度,mm;
摆频:每分钟摆动的次数,次/min;
两端仃留的时间。
采用数码匀速摆动器,可设定以上参数。
(7)离子气流量
离子气是形成等离子弧的工作气体,对电弧起压缩作用。过大的离子气流量会使电弧变“刚”,对熔池的穿透力增强,工件熔深增加。过小的离子气流量,不足以维持冷气壁效应,对电弧压缩不利,危及电弧的稳定。气流量应取决喷嘴孔径大小和对电弧的压缩性。一般根据孔道的截面积,流量在12-15L/mm2.h范围内选取。
(8)送粉气流量
送粉气起输送粉末作用,过大的送粉气流量会对电弧干扰并造成粉末飘散;过小气流量将造成堵粉现象,采用对称喷射式送粉时,控制好送粉气流量尤为重要,适宜的送粉气流量可形成很好的喷射效果。
(9)保护气流量
保护气对熔池起保护作用,在形成良好保护气罩的情况下减少气耗量。
3.2工艺控制的技术进步
随着设备系统的技术进步,粉末等离子堆焊在工艺控制上有了大幅度提升,主要有以下方面:
(1)工艺参数设定和控制的智能化、直接物理量化。
由于采用了IGBT逆变式弧焊电源、数字化的控制系统及人机界面操作系统,以及配置带智能功能的编程软件,实现只要键入工件堆焊面和焊道的几何尺寸,设定熔敷率或堆焊速度,就自动给出相匹配的工艺参数,且显示直接物理化,使工艺操作十分便捷和直观。
(2)工艺参数设定和调节的精细化和高稳定性。
由于单个工艺动作都引入了数码控制,如送粉、摆动、转弧弧压控制等,因而可精细设定和调节工艺参数,并可根据工艺控制的需要,增加特殊的控制功能,如为保证园环焊道搭接质量,采用送粉递增和递减控制;转弧衰减过程摆动幅度亦配合衰减等,有效的避免了熄弧部位的缩孔。采用了转弧电压自动稳定的数码控制,使转弧电压自动稳定,精度控制在±0.5V。这些控制功能大大提升了工艺水平。
(3)焊枪定位系统采用步进数控或三维数控。
焊枪的空间定位也是工艺控制的重耍方面,以往是由肉眼观察或标尺手动调节定位,通过采用步进电机驱动或数控(CNC)定位系统,焊枪空间定位可以按座标设定,实现精细、精确和便捷的控制。
(4)专用程序软件的开发应用。
先进的编程软件提升了工艺水平和整机性能。
(5)采用新型结构的大功率等离子弧焊枪。
新枪型在密封性、对中性、绝缘性上有很大的提升。冷却效果好,电弧稳定,“刚”“柔”适中,喷嘴寿命长。在粉路上采用了对称喷射式送粉,克服了以住在粉末等离子堆焊中易出现的“结珠”“双弧”等故障。
(6)增强焊枪冷却效果。
由于配置冷冻式换热系统,将水温降低到室温以下的设定温度,再通过水泵增压供给焊枪,这样进入焊枪的冷却水总是维持在设定的温度范围内,不受环境温度的影响,因而对焊枪有良好的冷却效果。
4.应用示例
4.1应用分类
粉末等离子堆焊工艺已应用于工业制造业的多个领域,主要目的在于获得有特定性能(耐磨、耐蚀、耐温等性能)的合金硬面层。从应用角度有以下分类:
(1) 按工件堆焊面的几何形状分类。
主要分为:园平面、园锥面、园柱面、园柱螺旋面、平面线段或平面等。针对不同类型的工件,在工艺控制程序上有所区别。对于复杂的平面线段(连续或不连续的直线段或曲线段),要实现全自动堆焊,就要采用数控系统。对同一类型工件,在几何尺寸上相差甚大者,则要选择相适应的机型。
(2) 按工件所属的制造行业分类。
根据目前的应用情况,主要有:阀门制造行业、气门制造行业、冶金轧制工具制造行业、石油机械行业、煤矿机械行业、电力机械行业等等。随着应用范围的扩大,将会有更多的制造行业在产品的修造中采用粉末等离子堆焊技术。
4.2在阀门制造行业的应用
粉末等离子堆焊工艺在我国阀门制造行业成功的推广应用已有四十余年的历史,主要用于密封面堆焊钴基、镍基、铁基硬面合金。对于高温高压阀门或耐腐蚀阀门,密封面堆焊钴基或镍基合金,具有优质、高效、节材、工艺稳定、劳动强度低等突出的优越性。对于量大面广的中温中压阀门(闸阀、截止阀、止回阀、旋塞阀等),采用已研制成功有良好工艺及使用性能的铁基合金粉末堆焊,代替手工堆焊2Cr13,使耐擦伤性能成倍提高,大大延长了阀门使用寿命,而且降低了综合的密封面制造成本,有显著的社会效益和企业经济效益。随着我国阀门制造业的飞速发展和对品质的不断提升,密封面制造工艺技术及其装备愈益显得重要,
粉末等离子堆焊工艺技术更显其优越性。
用于阀门密封面堆焊的数字化控制的粉末等离子堆焊机,机型有多种,可满足不同类型和规格阀门堆焊的耍求,设备性能已达到国际先进水平,操作便捷。
陈经理 13651967323