SBD的结构及特点使其适合于在低压、大电流输出场合用作高频整流,在非常高的频率下(如X波段、C波段、S波段和Ku波段)用于检波和混频,在高速逻辑电路中用作箝位。在IC中也常使用SBD,像SBD?TTL集成电路早已成为TTL电路的主流,在高速计算机中被广泛采用。
除了普通PN结二极管的特性参数之外,用于检波和混频的SBD电气参数还包括中频阻抗(指SBD施加额定本振功率时对指定中频所呈现的阻抗,一般在200Ω~600Ω之间)、电压驻波比(一般≤2)和噪声系数等。
9作用
肖特基二极管肖特基(Schottky)二极管,又称肖特基势垒二极管(简称 SBD),它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。在通信电源、变频器等中比较常见。
一个典型的应用,是在双极型晶体管 BJT 的开关电路里面,通过在 BJT 上连接 Shockley 二极管来箝位,使得晶体管在导通状态时其实处于很接近截止状态,从而提高晶体管的开关速度。这种方法是 74LS,74ALS,74AS 等典型数字 IC 的 TTL内部电路中使用的技术。
肖特基(Schottky)二极管的最大特点是正向压降 VF 比较小。在同样电流的情况下,它的正向压降要小许多。另外它的恢复时间短。它也有一些缺点:耐压比较低,漏电流稍大些。选用时要全面考虑。
10检测
肖特基(Schottky)二极管也称肖特基势垒二极管(简称SBD),它是一种低
肖特基二极管结构符号特性曲线
功耗、超高速半导体器件,广泛应用于开关电源、变频器、驱动器等电路,作高频、低压、大电流整流二极管、续流二极管、保护二极管使用,或在微波通信等电路中作整流二极管、小信号检波二极管使用。
性能比较
下表列出了肖特基二极管和超快恢复二极管、快恢复二极管、硅高频整流二极管、硅高速开关二极管的性能比较。由表可见,硅高速开关二极管的trr虽极低,但平均整流电流很小,不能作大电流整流用。
检测方法
下面通过一个实例来介绍检测肖特基二极管的方法。检测内容包括:①识别电极;②检查管子的单向导电性;③测正向导压降VF;④测量反向击穿电压VBR。
被测管为B82-004型肖特基管,共有三个管脚,将管脚按照正面(字面朝向人)从左至右顺序编上序号①、②、③。选择500型万用表的R×1档进行测量,全部数据整理成下表:
肖特基二极管测试结论:
第一,根据①—②、③—④间均可测出正向电阻,判定被测管为共阴对管,①、③脚为两个阳极,②脚为公共阴极。
第二,因①—②、③—②之间的正向电阻只几欧姆,而反向电阻为无穷大,故具有单向导电性。
第三,内部两只肖特基二极管的正向导通压降分别为0.315V、0.33V,均低于手册中给定的最大允许值VFM(0.55V)。
另外使用ZC 25-3型兆欧表和500型万用表的250VDC档测出,内部两管的反向击穿电压VBR依次为140V、135V。查手册,B82-004的最高反向工作电压(即反向峰值电压)VBR=40V。表明留有较高的安全系数.
11其它
高压SBD
长期以来,在输出12V~24V的SMPS中,次级边的高频整流器只有选用100V
肖特基二极管
的SBD或200V的FRED。在输出24V~48V的SMPS中,只有选用200V~400V的FRED。设计者迫切需要介于100V~200V之间的150VSBD和用于48V输出SMPS用的200VSBD。近两年来,美国IR公司和APT公司以及ST公司瞄准高压SBD的巨大商机,先后开发出150V和200V的SBD。这种高压SBD比原低压SBD在结构上增加了PN结工艺,形成肖特基势垒与PN结相结合的混合结构,如图2所示。采用这种结构的SBD,击穿电压由PN结承受。通过调控N-区电阻率、外延层厚度和P+区的扩散深度,使反偏时的击穿电压突破了100V这个长期不可逾越的障碍,达到150V和200V。在正向偏置时,高压SBD的PN结的导通门限电压为0.6V,而肖特基势垒的结电压仅约0.3V,故正向电流几乎全部由肖特基势垒供给。
为解决SBD在高温下易产生由金属-半导体的整流接触变为欧姆接触而失去导电性这一肖特基势垒的退化问题,APT公司通过退火处理,形成金属-金属硅化物-硅势垒,从而提高了肖特基势垒的高温性能与可靠性。
肖特基二极管参数
ST公司研制的150VSBD,是专门为在输出12V~24V的SMPS中替代200V的高频整流FRED而设计的。像额定电流为2×8A的STPS16150CT型SBD,起始电压比业界居先进水平的200V/2×8AFRED(如STRR162CT)低0.07V(典型值为0.47V),导通电阻RD(125℃)低6.5mΩ(典型值为40mΩ),导通损耗低0.18W(典型值为1.14W)。
APT公司推出的APT100S20B、APT100S20LCT和APT2×10IS20型200VSBD,正向平均电流IF(AV)=100A,正向压降VF≤0.95V,雪崩能量EAS=100mJ。EAS的表达式为
EAS=VRRM×IAS×td
在式(1)中,200VSBD的VRRM=200V,IAS为雪崩电流,并且IAS≈IF=100A,EAS=100mJ。在IAS下不会烧毁的维持时间:td=EAS/(VRRM×IAS)=1000mJ/(200V×100A)=5μs。也就是说,SBD在出现雪崩之后IAS=100A时,可保证在5μs之内不会损坏器件。EAS是检验肖特基势垒可靠性的重要参量200V/100A的SBD在48V输出的通信SMPS中可替代等额定值的FRED,使整流部分的损耗降低10%~15%。由于SBD的超快软恢复特性及其雪崩能量,提高了系统工作频率和可靠性,EMI也得到显著的改善。
业界人士认为,即使不采用新型半导体材料,通过工艺和设计创新,SBD的耐压有望突破200V,但一般不会超过600V。
SiC高压SBD
由于Si和GaAs的势垒高度和临界电场比宽带半导体材料低,用其制作的SBD击穿电压较低,反向漏电流较大。碳化硅(SiC)材料的禁带宽度大(2.2eV~3.2eV),临界击穿电场高(2V/cm~4×106V/cm),饱合速度快(2×107cm/s),热导率高为4.9W/(cm·K),抗化学腐蚀性强,硬度大,材料制备和制作工艺也比较成熟,是制作高耐压、低正向压降和高开关速度SBD的比较理想的新型材料。
1999年,美国Purdue大学在美国海军资助的MURI项目中,研制成功4.9kV的SiC功率SBD,使SBD在耐压方面取得了根本性的突破。 SBD的正向压降和反向漏电流直接影响SBD整流器的功率损耗,关系到系统效率。低正向压降要求有低的肖特基势垒高度,而较高的反向击穿电压要求有尽可能高的势垒高度,这是相矛盾的。因此,对势垒金属必须折衷考虑,故对其选择显得十分重要。对N型SiC来说,Ni和Ti是比较理想的肖特基势垒金属。由于Ni/SiC的势垒高度高于Ti/SiC,故前者有更低的反向漏电流,而后者的正向压降较小。为了获得正向压降低和反向漏电流小的SiCSBD,采用Ni接触与Ti接触相结合、高/低势
肖特基二极管
垒双金属沟槽(DMT)结构的SiCSBD设计方案是可行的。采用这种结构的SiCSBD,反向特性与Ni肖特基整流器相当,在300V的反向偏压下的反向漏电流比平面型Ti肖特基整流器小75倍,而正向特性类似于NiSBD。采用带保护环的6H-SiCSBD,击穿电压达550V。
据报道,C.M.Zetterling等人采用6H?SiC衬底外延10μm的N型层,再用离子注入形成一系列平行P+条,顶层势垒金属选用Ti,这种结构与图2相类似的结势垒肖特基(JunctionBarrierSchottky,缩写为JBS)器件,正向特性与Ti肖特基势垒相同,反向漏电流处于PN结和Ti肖特基势垒之间,通态电阻密度为20mΩ·cm2,阻断电压达1.1kV,在200V反向偏压下的漏电流密度为10μA/cm2。此外,R·Rayhunathon报道了关于P型4H?SiCSBD、6H?SiCSBD的研制成果。这种以Ti作为金属势垒的P型4H?SiCSBD和6H?SiCSBD,反向击穿电压分
肖特基二极管
别达600V和540V,在100V反向偏压下的漏电流密度小于0.1μA/cm2(25℃)。
SiC是制作功率半导体器件比较理想的材料,2000年5月4日,美国CREE公司和日在SBD方面,采用SiC材料和JBS结构的器件具有较大的发展潜力。在高压功率二极管领域,SBD肯定会占有一席之地。 肖特基二极管常见的型号: MBR300100CT
MBR400100CT
MBR500100CT
MBR600100CT
MBR30050CT
MBR40050CT
MBR50050CT
MBR60050CT