整流二极管
一种用于将交流电转变为直流电的半导体器件。通常它包含一个PN结,有阳极和阴极两个端子。其结构如图1所示。P区的载流子是空穴,N区的载流子是电子,在P区和N区间形成一定的位垒。外加使P区相对N区为正的电压时,位垒降低,位垒两侧附近产生储存载流子,能通过大电流,具有低的电压降(典型值为0.7V),称为正向导通状态。若加相反的电压,使位垒增加,可承受高的反向电压,流过很小的反向电流(称反向漏电流),称为反向阻断状态。整流二极管具有明显的单向导电性。整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造(掺杂较多时容易反向击穿)。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频半波整流电路,如需达到全波整流需连成整流桥使用。
选用
1N4001
整流二极管一般为平面型硅二极管,用于各种电源整流电路中。
选用整流二极管时,主要应考虑其最大整流电流、最大反向工作电流、截止频率及反向恢复时间等参数。
普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管即可。例如,1N系列、2CZ系列、RLR系列等。
开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、反向恢复时间较短的整流二极管(例如RU系列、EU系列、V系列、1SR系列等)或选择快恢复二极管。还有一种肖特基整流二极管。
3特性
整流二极管是利用PN结的单向导电特性,把交流电变成脉动直流电。整流二极管流电流较大,多数采用面接触性料封装的二极管。整流二极管的外形如图1所示,另外,整流二极管的参数除前面介绍的几个外,还有最大整流电流,是指整流二极管长时间的工作所允许通过的最大电流值。它是整流二极管的主要参数,是选项用整流二极管的主要依据。
4常用参数
(1)最大平均整流电流IF:指二极管长期工作时允许通过的最大正向平均电流。该电流由PN结的结面积和散热条件决定。使用时应注意通过二极管的平均电流不能大于此值,并要满足散热条件。例如1N4000系列二极管的IF为1A。
(2)最高反向工作电压VR:指二极管两端允许施加的最大反向电压。若大于此值,则反向电流(IR)剧增,二极管的单向导电性被破坏,从而引起反向击穿。通常取反向击穿电压(VB)的一半作为(VR)。例如1N4001的VR为50V,1N4002-1n4006分别为100V、200V、400V、600V和800V,1N4007的VR为1000V
(3)最大反向电流IR:它是二极管在最高反向工作电压下允许流过的反向电流,此参数反映了二极管单向导电性能的好坏。因此这个电流值越小,表明二极管质量越好。
(4)击穿电压VB:指二极管反向伏安特性曲线急剧弯曲点的电压值。反向为软特性时,则指给定反向漏电流条件下的电压值。
(5)最高工作频率fm:它是二极管在正常情况下的最高工作频率。主要由PN结的结电容及扩散电容决定,若工作频率超过fm,则二极管的单向导电性能将不能很好地体现。例如1N4000系列二极管的fm为3kHz。
(6)反向恢复时间trr:指在规定的负载、正向电流及最大反向瞬态电压下的反向恢复时间。
(7)零偏压电容CO:指二极管两端电压为零时,扩散电容及结电容的容量之和。值得注意的是,由于制造工艺的限制,即使同一型号的二极管其参数的离散性也很大。手册中给出的参数往往是一个范围,若测试条件改变,则相应的参数也会发生变化,例如在25°C时测得1N5200系列硅塑封整流二极管的IR小于10uA,而在100°C时IR则变为小于500uA。
二极管的判别及参数
1.简述
半导体是一种具有特殊性质的物质,它不像导体一样能够完全导电,又不像绝缘体那样不能导电,它介于两者之间,所以称为半导体。半导体最重要的两种元素是硅(读“guī”)和锗(读“zhě”)。我们常听说的美国硅谷,就是因为那里有好多家半导体厂商。
二极管应该算是半导体器件家族中的元老了。很久以前,人们热衷于装配一种矿石收音机来收听无线电广播,这种矿石后来就被做成了晶体二极管。
二极管最明显的性质就是它的单向导电特性,就是说电流只能从一边过去,却不能从另一边过来(从正极流向负极)。我们用万用表来对常见的1N4001型硅整流二极管进行测量,红表笔接二极管的负极,黑表笔接二极管的正极时,表针会动,说明它能够导电;然后将黑表笔接二极管负极,红表笔接二极管正极,这时万用表的表针根本不动或者只偏转一点点,说明导电不良(万用表里面,黑表笔接的是内部电池的正极)。
常见的几种二极管中有玻璃封装的、塑料封装的和金属封装的等几种。像它的名字,二极管有两个电极,并且分为正负极,一般把极性标示在二极管的外壳上。大多数用一个不同颜色的环来表示负极,有的直接标上“—”号。大功率二极管多采用金属封装,并且有个螺母以便固定在散热器上。
半导体二极管的极性判别及选用
(1) 半导体二极管的极性判别
一般情况下,二极管有色点的一端为正极,如2AP1~2AP7,2AP11~2AP17等。如果是透明玻璃壳二极管,可直接看出极性,即内部连触丝的一头是正极,连半导体片的一头是负极。塑封二极管有圆环标志的是负极,如IN4000系列。
无标记的二极管,则可用万用表电阻挡来判别正、负极,万用表电阻挡示意图见图T304。
根据二极管正向电阻小,反向电阻大的特点,将万用表拨到电阻挡(一般用R×100或R×1k挡。不要用R×1或R×10k挡,因为R×1挡使用的电流太大,容易烧坏管子,而R×10k挡使用的电压太高,可能击穿管子)。用表笔分别与二极管的两极相接,测出两个阻值。在所测得阻值较小的一次,与黑表笔相接的一端为二极管的正极。同理,在所测得较大阻值的一次,与黑表笔相接的一端为二极管的负极。如果测得的正、反向电阻均很小,说明管子内部短路;若正、反向电阻均很大,则说明管子内部开路。在这两种情况下,管子就不能使用了。
半导体二极管的选用
通常小功率锗二极管的正向电阻值为300~500Ω,硅管为1kΩ或更大些。锗管反向电阻为几十千欧,硅管反向电阻在500kΩ以上(大功率二极管的数值要大得多)。正反向电阻差值越大越好。
点接触二极管的工作频率高,不能承受较高的电压和通过较大的电流,多用于检波、小电流整流或高频开关电路。面接触二极管的工作电流和能承受的功率都较大,但适用的频率较低,多用于整流、稳压、低频开关电路等方面。
选用整流二极管时,既要考虑正向电压,也要考虑反向饱和电流和最大反向电压。选用检波二极管时,要求工作频率高,正向电阻小,以保证较高的工作效率,特性曲线要好,避免引起过大的失真。
利用二极管单向导电的特性,常用二极管作整流器,把交流电变为直流电,即只让交流电的正半周(或负半周)通过,再用电容器滤波形成平滑的直流。事实上好多电器的电源部分都是这样的。二极管也用来做检波器,把高频信号中的有用信号“检出来”,老式收音机中会有一个“检波二极管”,一般用2AP9型锗管。
二极管的类型也有好几种,对于电子制作来说,常常用到以下的二极管: 用于稳压的稳压二极管,用于数字电路的开关二极管,用于调谐的变容二极管,以及光电二极管等,最常看见的是发光二极管。
发光二极管在日常生活电器中无处不在,它能够发光,有红色、绿色和黄色等,有直径为3mm或5mm圆形的,也有规格为2×5mm长方形的。与普通二极管一样,发光二极管也是由半导体材料制成的,也具有单向导电的性质,即只有极性正确才能发光。
发光二极管的发光颜色一般和它本身的颜色相同,但是近年来出现了透明的发光管,它也能发出红黄绿等颜色的光,只有通电了才能知道。 辨别发光二极管正负极的方法,有实验法和目测法。实验法就是通电看看能不能发光,若不能就是极性接错或是发光管损坏。
注意发光二极管是一种电流型器件,虽然在它的两端直接接上3V的电压后能够发光,但容易损坏,在实际使用中一定要串接限流电阻,工作电流根据型号不同一般为1mA到30mA。另外,由于发光二极管的导通电压一般为1.7V以上,所以一节1.5V的电池不能点亮发光二极管。同样,一般万用表的R×1挡到R×1k挡均不能测试发光二极管,而R×10k挡由于使用15V的电池,能把有的发光管点亮。
用眼睛来观察发光二极管,可以发现内部的两个电极一大一小。一般来说,电极较小、个头较矮的一个是发光二极管的正极,电极较大的一个是它的负极。若是新买来脚较长的一个是正极。
发光二极管的伏安特性 发光二极管的伏安特性与普通二极管类似,但它的正向压降较大,并在正向压降达到一定值时发光。发光颜色和构成PN结的材料有关,通常有红、黄、绿、蓝和紫等颜色。发光亮度近似和工作电流密度成正比,但掺杂ZnO和GaP的发光二极管,其发光亮度随电流密度的增加会很快趋向饱和。另外,随结温的升高,LED的发光亮度将会减弱。
由于发光二极管的响应时间(光信号对电信号的延迟时间)一般小于100ns,故直流信号、交流信号或脉冲信号均可作为它的驱动信号。
国产LED器件用FG × 1 × 2 × 3 × 4 × 5 × 6命名,其中×1表示材料,×1取值1,2,3分别对应LED的材料为GaAsP,GaAsAl和GaP。×2表示发光颜色,×2取1~6时表示发光颜色为红、橙、黄、绿、蓝和复色,× 3表示封装形式。× 4表示外形,取0 ~ 6各整数时,分别指发光二极管的外形为圆形、长方形、符号形、三角形、正方形、组合形和特殊形。× 5 × 6为序号。
使用发光二极管时,若用电压源驱动,则应在电路中串接限流电阻,以防止LED中电流过大而损坏。用交流信号驱动时,为防止LED被反向击穿,可在两端反极性并连整流二极管。几种红色发光二极管的参数见表B313。
光敏二极管又称光电二极管,目前使用最多的是光电二极管。它有四种类型:PN结型,PIN结型,雪崩型和肖特基结型。以下简介PN结型光敏二极管。
PN结型光敏二极管同普通二极管一样,也是PN结构造,只是结面积较大,结深较浅,管壳上有光窗,从而使人射光容易注入PN结的耗尽区中进行光电转换,大的结面积增加了有效光面积,提高了光电转换效率。
在无光照射时,光敏二极管的伏安特性和普通二极管一样,此时的反向饱和电流叫暗电流,一般在几微安到几百微安之间,其值随反向偏压的增大和环境温度的升高而增大。在检测弱光电信号时,必须考虑用暗电流小的管子。
在有光照时,光敏二极管在一定的反偏电压范围内(UR≥5V),其反向电流将随光照强度(10-3~103 lx范围内)的增加而线性增加,这时的反向电流又叫光电流。因此,对应一定的光照强度,光敏二极管相当于一个恒流源。在有光照而无外加电压时,光敏二极管相当于一个电池,P区为正,N区为负。
光敏二极管有一定光谱响应范围,并对某波长的光有最高的响应灵敏度(峰值波长)。因此,为获取最大的光电流,应选择光谱响应特性符合待测光谱的光敏二极管,同时加大照度和调整入射的角度。
光敏二极管的响应时间,一般小于几百微秒,主要取决于结电容和外部电路电阻的乘积。表B316列出了几种光敏二极管的参数,其中灵敏度指输入给定波长的单位功率时,光敏二极管能输出的光电流值。