超声波清洗的应用原理是由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质,清洗溶剂中超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的微小气泡(空化核)在声场的作用下振动,当声压达到一定值时,气泡迅速增长,然后突然闭合,在气泡闭合时产生冲击波,在其周围产生上千个大气压力,破坏不溶性污物而使它们分散于清洗液中,当团体粒子被油污裹着而粘附在清洗件表面时,油被乳化,固体粒子即脱离,从而达到清洗件表面净化的目的。
超声波清洗的空化作用与其声压强度有关,如果声压强度达不到一定的值,就不能发生空化作用,这个值就叫空化阈值。因为在液体中只有交变声压超过静压时才出现负压,而负压要超过液体的强度时才产生空穴。也就时说,声压要高于空化阈值才能产生空穴,只有超声能大于空化阈值才能有空化效应。声压强度越高,也即功率密度越大,空化效应也越明显。但是功率密度不能过大,否则有可能对工件表面产生空化腐蚀。
超声波清洗除了与超声波的频率有关,与超声波的声压强度有关以外,还与清洗介质的物理性质有关,如温度、蒸汽压、表面张力、密度、黏度等。此外清洗介质中含有的气体和溶解氧也有重大影响。不同的清洗介质,其物理性质不同,其空化阈值也不同。清洗介质的表面张力越大,空化所需的能量也越大,即空化阈值增加。清洗介质的黏度越大,越不易产生空穴,其空化阈值也越大。清洗介质的蒸汽压对产生空化作用也有影响。只有在清洗介质的局部压力小于清洗介质本身的蒸汽压时才会产生空化。温度对清洗介质的蒸汽压、表面张力、黏度都有影响,所以也对空化作用产生影响,当温度达到沸点时将不再产生空化。
超声波的频率与空化作用也有关,超声波频率越高其空化阈值越大,产生空穴所需的声压强度也越大。超声波频率低时,产生的空穴大而数量少,力强;超声波频率增加时,空穴小而数量多,力小而范围广,清洗比较精细。但如果频率增加到超高频近1000KHZ时将功赎罪不再产生空化作用,其清洗能量主要是靠加速度能量,将达到重力加速度的105倍,用于去除亚微米粒子污染。