

KN-100HC 全数字交流伺服

——ALL DIGITAL AC SERVO

说明书

版本Rev. 01)

南京康尼电子科技有限公司

NANJING KANGNI ELECTRONIC TECHNOLOGY CO.,LTD.

目 录

第1章 规 格	1
1.1 伺服驱动器规格	1
1.2 伺服驱动器尺寸	2
第2章 安装与接线	3
2.1 安装与接线	3
2.2 安装方法	4
2.3 标准连接	5
2.3.1 位置控制	5
2.3.2 速度控制	6
2.3.3 转矩控制	7
2.4 配线规格	8
2.5 配线方法	8
2.6 注意事项	9
第3章 接 口	
3.1 电源端子TB	
3.2 控制信号输入 / 输出端子CN1	
3.3 编码器信号输入端子CN2	
3.4 接口端子配置	
3.5 输入 / 输出接口类型	
3.5.1 开关量输入接口	
3.5.2 开关量输出接口	
3.5.3 脉冲量输入接口	
3.5.4 模拟输入接口	
3.5.5 编码器信号输出接口	
3.5.6 编码器Z 信号集电极开路输出接口	
3.5.7 伺服电机光电编码器输入接口	
第4章 参数	
4.1参数一览表	
4.2 参数内容	
4.3型号代码参数与电机对照表	
第5章 报警与保护功能	
5.1 报警一览表	
5.2 报警原因与处理方法	
第6章 显示与键盘操作	
6.1 第1层	
6.2 第2层 6.2.1 监视方式	
6.2.2 参数设置	
6.2.3 参数管理	
6.2.4 速度试运行	
v.=. + <u>v.=/</u> > \(\nabla_1 \)	

6.2.5 JOG运行	47
第7章 运 行	48
7.1 接地	48
7.2 工作时序	48
7.2.1电源接通次序	48
7.2.2时序图	49
7.3 注意事项	50
7.4 试运行	51
7.4.1 运行前的检查	51
7.4.2 通电试运行	51
7.5 位置控制模式的简单接线运行	53
7.6 速度控制模式的简单接线运行	56
7.7 转矩控制模式的简单接线运行	58
7.8 调整	60
7.8.1 基本增益调整	60
7.8.2 基本参数调整图	61
7.9 常见问题	61
7.9.1 恢复缺省参数	61
7.9.2 频繁出现Err-15、Err-30、Err-31、Err-32 报警	62
7.9.3 出现Power灯不能点亮现象	62
7.10 相关知识	63
7.10.1 位置分辨率和电子齿轮的设置	63
7.10.2 位置控制时的滞后脉冲	63
第8章 动态电子齿轮使用	64
8.1 简要接线	64
8.2 操作	64

第一章 规格

1.1 伺服驱动器规格

型号		KN-100HC			
输入	电源	单相或三相220V,-15/+10%,50/60Hz			
温度环境		工作: 0~40℃,存储: -40℃~50℃			
	湿度	40%—80%(无结露)			
	压强	86—106 kPa			
控制	方式	1:位置控制 2:速度控制 3:转矩控制 4:J0G运行			
再生	E制动	内置			
特性	速度频响	200Hz或更高			
村注.	速度波动	<±0.03(负载0~100%); <±0.02(电源-15~+10%); (数值对应于额定速度)			
	调速比	1:5000			
	脉冲频率	≤500kHz			
输入	½ 抱制	1:伺服使能 2:报警清除 3:CCW驱动禁止 4:CW驱动禁止 5:偏差计数器清零/速度选择1/零速箝位 6:指令脉冲禁止/速度选择2 7:CCW转矩限制 8:CW转矩限制			
输出	占控制	1:伺服准备好 2:伺服报警 3:定位完成输出/速度到达输出			
 	捏控制	输入方式 1: 脉冲+方向 2:CW/CCW 脉冲 3:A/B 正交脉冲			
75. 追	1. 控制	电子齿轮 1~32767/1~32767			
		反馈脉冲 2500 线/转			
速度	E 控制	1:外部模拟量速度运行 2:JOG运行 3:试运行 4:4档内部速度运行			
加减	速控制	参数设置1~10000ms/1000r/min			
监视功能		转速、当前位置、指令脉冲积累、位置偏差、电机转矩、电机电流、直 线速度、转子绝对位置、指令脉冲频率、运行状态、输入/输出端子信号等			
保护功能		超速、主电源过压欠压、过流、制动异常、编码器异常、控制电源异常、位置超差等			
适应负	位载惯量	小于电机惯量5倍			

1.2 伺服驱动器尺寸

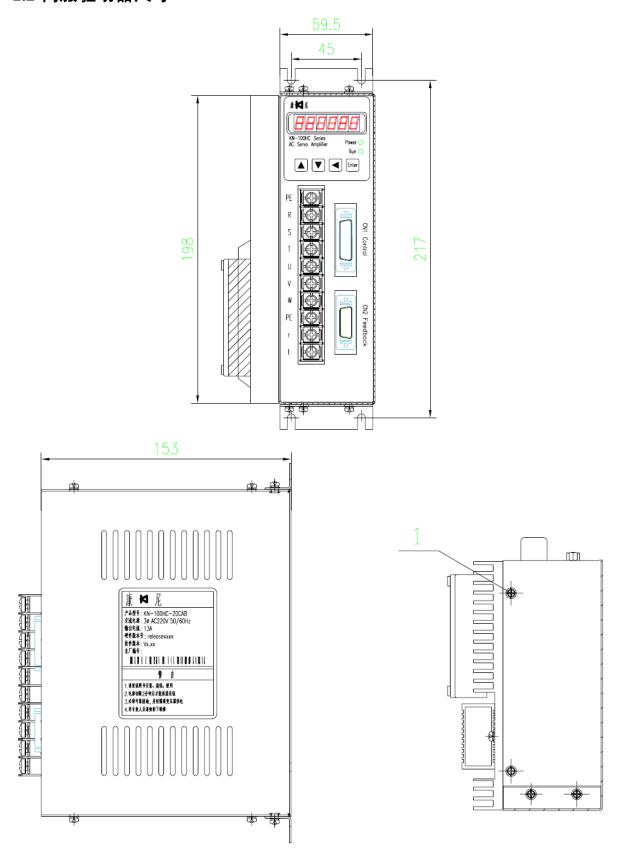


图 1.1 KN-100HC尺寸图

第二章 安装与接线

2.1 安装与接线

1) 电气控制柜内的安装

由于电气控制柜内部电气设备的发热以及控制柜内的散热条件,伺服驱动器周围的温度将会不断升高,所以要考虑驱动器的冷却以及控制柜内的配置情况,保证伺服驱动器周围温度在55°C以下,相对湿度90%以下。长期安全工作温度在45°C以下。

2) 伺服驱动器附近有发热设备

伺服驱动器在高温条件下工作,会使其寿命明显缩短,并会产生故障。所以应保证伺服驱动器在热对流和热辐射的条件下周围温度在55°C以下。

3) 伺服驱动器附近有振动设备

采用各种防振措施,保证伺服驱动器不受振动影响,振动保证在 $0.5G(4.9m/S^2)$ 以下。

4) 伺服驱动器在恶劣环境使用

伺服驱动器在恶劣环境使用时,接触腐蚀性气体、潮湿、金属粉尘、水以及加工液体,会使驱动器发生故障。所以在安装时,必须保证驱动器的工作环境。

5) 伺服驱动器附近有干扰设备

伺服驱动器附近有干扰设备时,对伺服驱动器的电源线以及控制线有很大的干扰影响,使驱动器产生误动作。可以加入噪声滤波器以及其它各种抗干扰措施,保证驱动器的正常工作。注意加入噪声滤波器后,漏电流会增大,为了避免这一问题,可以使用隔离变压器。

特别注意驱动器的控制信号线很容易受到干扰,要有合理的走线和屏蔽措施。

注意: 以上安装与接线事项敬请仔细阅读

2.2 安装方法

1) 安装方向

伺服驱动器的正常安装方向是垂直直立方向。

2) 安装固定

安装时,上紧伺服驱动器后部的4个M5固定螺丝。

3) 安装间隔

伺服驱动器之间以及与其它设备间的安装间隔距离,请参考图2.1,注意图上标明的是最小尺寸,为了保证驱动器的使用性能和寿命,请尽可能地留有充分的安装间隔。

4) 散热

伺服驱动器采用自然冷却方式,在电气控制柜内必须安装散热风扇,保证有垂直方向的风对 伺服驱动器的散热器散热。

5) 安装注意事项

安装电气控制柜时,应防止粉尘或铁屑进入伺服驱动器内部。

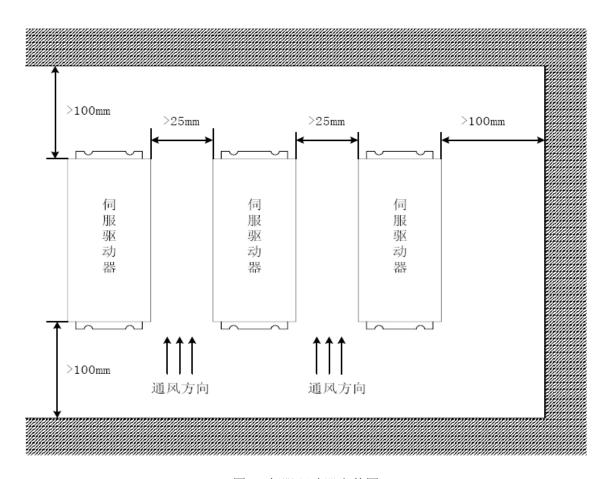


图2.1 伺服驱动器安装图

2.3 标准连接

2.3.1 位置控制

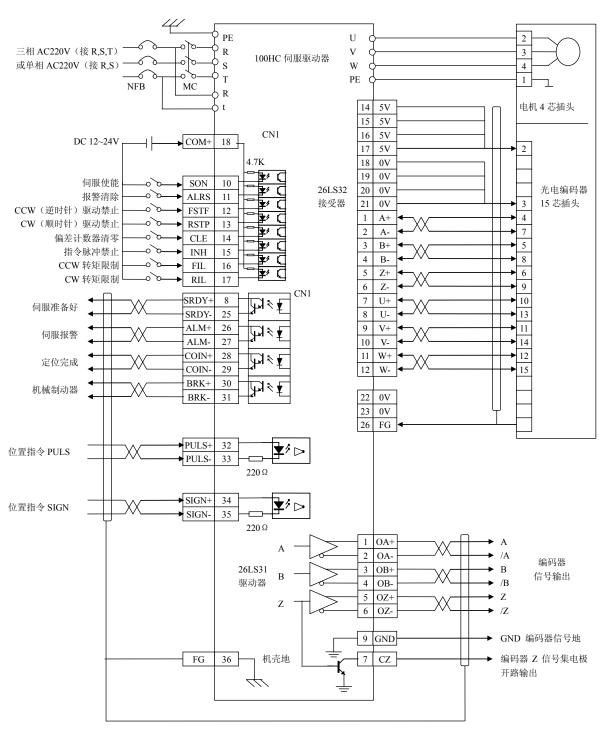


图2.2 位置控制的标准接线

2.3.2 速度控制

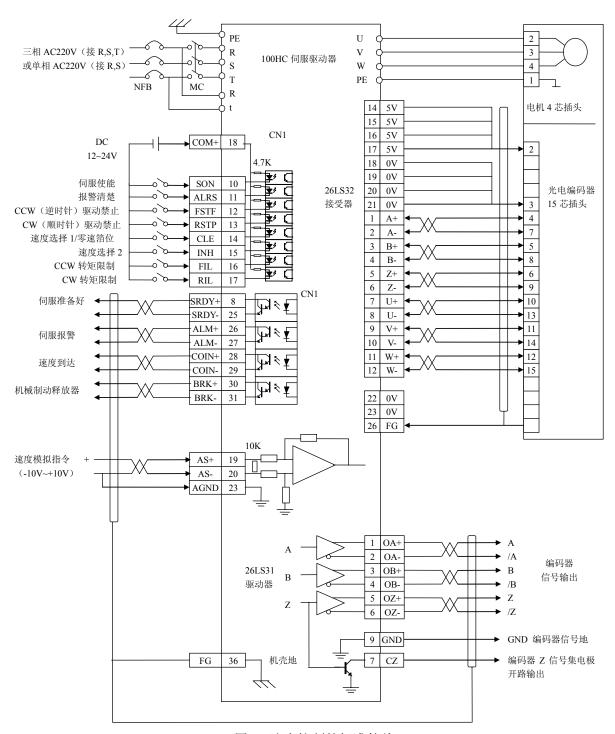


图2.3 速度控制的标准接线

2.3.3 转矩控制

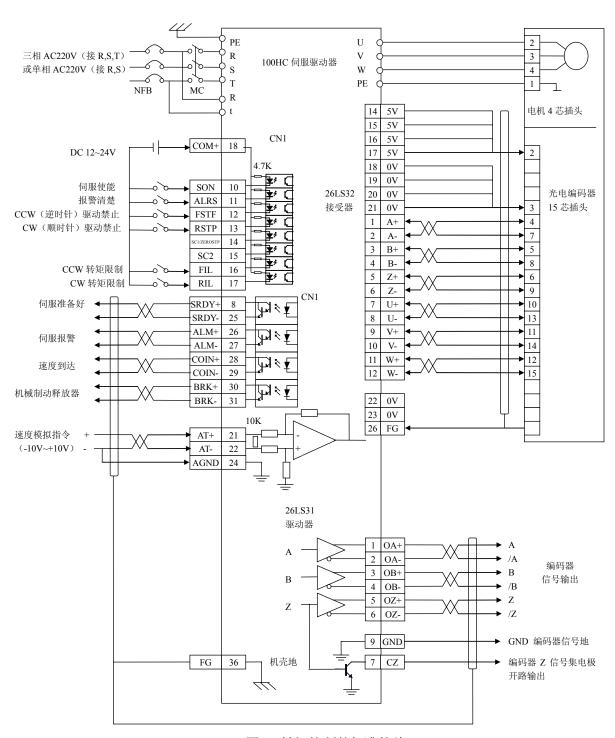
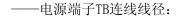



图2.4 转矩控制的标准接线

2.4 配线规格

R、S、T、PE、U、V、W 端子线径≥1.5mm²。(AWG14-16);

r、t 端子线径≥1.0mm²(AWG16-18);

- ——端子采用预绝缘冷压端子,务必连接牢固;
- ——建议采用三相隔离变压器供电。

2.5 配线方法

- 1) 输入输出信号线和编码器信号线,请使用推荐的电缆或相似的屏蔽线,配线长度为:输入输出信号线3m 以下,编码器信号线20m 以下。接线时按最短距离连接,越短越好,主电路接线与信号线要分离。
- 2)接地线要粗,作成一点接地(接地电阻 $<100~\Omega$),伺服电机的接地端子与伺服驱动器的接地端子PE 务必相连。
- 3) 为防止干扰引起误动作,建议安装噪声滤波器,并注意:
- ——噪声滤波器、伺服驱动器和上位控制器尽量近距离安装。
- ——继电器、电磁接触器、制动器等线圈中务必安装浪涌抑制器。
- ——主电路和信号线不要在同一管道中通过及不要扎在一起。
- 4) 在附近用强烈干扰源时(如电焊机、电火花机床等),输入电源上使用隔离变压器可以防止干扰引起误动作。
- 5) 请安装非熔断型断路器(NFB)使驱动器故障时能及时切断外部电源。
- 6) 正确连接电缆屏蔽层。

2.6 注意事项

- 1) 驱动 $U \times V \times W$ 的接线必须与电机端子 $U \times V \times W$ 对应连接,注意不能用调换三相端子的方法来使电机反转,这一点与异步电动机完全不同。
- 2) 由于伺服电机流过高频开关电流,因此漏电流相对较大,电机接地端子必须与伺服驱动器接地端子PE 连接一起并良好接地。
- 3) 因为伺服驱动器内部有大容量的电解电容,所以即使切断了电源,内部电路中仍有高电压。在电源被切断后,最少等待5分钟以上,才能接触驱动器和电机。
- 4)接通电源后,操作者应与驱动器和电机保持一定的距离。
- 5) 长时间不使用,请将电源切断。
- 6)本接线图针对武汉华大新型电机有限责任公司(华中理工大学新型电机厂)的STAR系列交流伺服电机。
- 7) 旋转方向定义:面对电机轴伸,转动轴逆时针旋转为CCW方向,旋转轴顺时针旋转为CW方向。一般称CCW为正方向,CW为负方向。

第三章 接口

3.1 电源端子TB

表3.1 电源端子TB

端子号	端子记号	信号名称	功能说明			
1	PE	系统接地	接地端子			
2	R		主回路电源输入端子			
3	S	主回路电源输入 单相或三相	~220V 50Hz 注意:不要同电机输出端子U、V、W连接。			
4	T					
5	U		伺服电机输出端子			
6	V	伺服电机输出	必须与电机A、B、C端子一一对应连接。			
7	W					
8	PE	接地	接地端子,接电机的外壳地			
9	r	控制电源输入	控制回路电源输入端子~220V 50Hz			
10	t		~22UV JUNZ			

3.2 控制信号输入/输出端子CN1

控制方式简称: P代表位置控制方式, S 代表速度控制方式。

表3.2 控制信号输入/输出端子CN1

端子号	信号名称		端子名称		功能	
	II 37170	记号	I/O类型	适用方式	20116	
18	输入端子 电源正极	COM+	TYPE1		输入端子的电源正极。用来驱动输入端的光电耦合器DC12~24V,电流≥100mA。	
10	伺服使能	SON	TYPE1		伺服使能输入端子 SON ON: 允许驱动器工作 SON OFF: 驱动器关闭,停止工作,电机处于自由 状态。 注 1: 当从 SON OFF 打到 SON ON 前,电机必须 是静止的; 注 2: 打到 SON ON 后,至少等待 50ms,再输入 命令。	

地フロ	台 日 4 		端子名称		T.L. A.K.
端子号	信号名称	记号	I/O类型	适用方式	功能
11	报警清除	ALRS	Type1		报警清除输入端子 ALRS ON: 清除系统报警 ALRS OFF: 保持系统报警 注 1: 对于故障代码大于 8 的报警,无法用此方法 清除,需要断电检修,然后再次通电。
12	CCW驱动 禁止	FSTP	Type1		CCW(逆时针方向)驱动禁止输入端子FSTPON:CCW驱动允许,电机可以逆时针方向旋转;FSTPOFF:CCW驱动禁止,电机禁止逆时针方向旋转。注1:用于机械超限,当开关OFF时,CCW方向转矩保持为0;注2:可以通过设置参数PA20=1屏蔽此功能,用户不用连此端子,也能使CCW驱动允许。
13	CW 驱动禁止	RSTP	Type1		CW(顺时针方向)驱动禁止输入端子RSTP ON:CW驱动允许,电机可以顺时针方向旋转;RSTP OFF: CW驱动禁止,电机禁止顺时针方向旋转;注1:用于机械超限,当开关OFF时,CW方向转 矩保持为0;注2:可以通过设置参数PA20=1屏蔽此功能,用户不用连此端子,也能使CW驱动允许。
14	偏差计数器 清零	CLE	Type1	Р	位置控制方式下(参数 PA4=0),位置偏差计数器 清零输入端子 CLE ON: 位置控制时,位置偏差计数器清零。
	速度选择 1	SC1	Type1	S	速度控制方式下参数(PA4=1),选择内部速度时(参数 No42=0) 速度选择 1 输入端子 在速度控制方式下,SC1 和 SC2 的组合用来选择 不同的内部速度 SC1 OFF,SC2 OFF: 内部速度 1 SC1 ON,SC2 OFF: 内部速度 2 SC1 OFF,SC2 ON: 内部速度 3 SC1 ON,SC2 ON: 内部速度 4 注: 内部速度 1~4 的数值可以通过参数修改。
	零速箝位	ZEROSP D	Type1	S	速度控制方式下参数(PA4=1),选择外部模拟速度 时(参数 PA42=1,缺省值) ZEROSPD ON:不管模拟输入是多少,强迫速度指令 为零; ZEROSPD OFF:速度指令为模拟输入数值。
15	指令脉冲禁止	INH	Type1	Р	位置控制方式下(参数 PA4=0),位置指令脉冲禁止输入端子 INH ON : 指令脉冲输入禁止 INH OFF: 指令脉冲输入有效

까 그 ㅁ	P- [] 1-14		端子名称		Tl. 44k
端子号	信号名称	记号	I/O类型	适用方式	功能
	速度选择 2	SC2	Type1	S	速度控制方式下参数(PA4=1),选择内部速度时(参数 PA42=0) 速度选择 2 输入端子 在速度控制方式下,SC1 和 SC2 的组合用来选择 不同的内部速度 SC1 OFF,SC2 OFF: 内部速度 1 SC1 ON,SC2 OFF: 内部速度 2 SC1 OFF,SC2 ON: 内部速度 3 SC1 ON,SC2 ON: 内部速度 4
16	CCW 转矩 限制	FIL	Type1		CCW(逆时针方向)转矩限制输入端子 FILON: CCW转矩限制在参数 PA36 范围内 FILOFF: CCW转矩限制不受参数 PA36 限制 注 1:不管 FIL 有效还是无效,CCW 转矩还受参数 PA34 限制,一般参数 PA34>参数 PA36
17	CW 转矩 限制	RIL	Type1		CW(顺时针方向)转矩限制输入端子 RIL ON: CW 转矩限制在参数 PA37 范围内 RIL OFF: CW 转矩限制不受参数 PA37 限制 注1: 不管 RIL 有效还是无效,CW 转矩还受参数 PA35 限制,一般 参数 PA35 参数 PA37 。
8	伺服准备好	SRDY+	Type2		伺服准备好输出端子
25	输出	SRDY-			SRKN ON: 控制电源和主电源正常,驱动器没有报警,伺服准备好输出 ON (输出导通); SRKN OFF: 主电源未合或驱动器有报警,伺服准备好输出 OFF (输出截止)。
26	伺服报警 输出	ALM+	Type2		伺服报警输出端子 ALM ON: 伺服驱动器无报警,伺服报警输出 ON
27	419 LLI	ALM-			(输出导通); ALM OFF: 伺服驱动器有报警, 伺服报警输出 OFF (输出截止)。
28	定位完成	COIN+	Type2	P	定位完成输出端子
	输出 (位置控			S	COIN ON: 当位置偏差计数器数值在设定的定位范围时,定位完成输出ON(输出导通),否则输出OFF
29	制方式 下)	COIN-		P	(输出截止)。 速度到达输出端子
	速度到达 输出 (速度控 制方式 下)			S	COIN ON: 当速度到达或超过设定的速度时,速度到达输出ON(输出导通),否则输出OFF(输出截止)。

端子号	信号名称	站	_尚 子名称		功能
NII 1 3	II 7 11 1/1				NHE.
		记号	I/O类型	适用方式	
• •	to that to the end of				
30	机械制动器释放	BRK+	Type2		当电机具有机械制动器 (失电保持器) 时,可以用 此端口控制制动器。 BRK ON:制动器通电,制动无效,电机可以运
31		BRK-			行; BRK OFF: 制动器截止,制动有效,电机被锁死,不能运行。 注: BRK 功能是由驱动器内部控制。
32	指令脉冲PLUS 输入	PULS+	Type3	P	外部指令脉冲输入端子
33	相りへ	PULS-			注 1: 由参数 PA14 设定脉冲输入方式 ① PA14=0,指令脉冲+符号方式;(缺省状态)
34	指令脉冲 SIGN	SIGN+	Type3	Р	② PA14=1, CCW/CW 指令脉冲方式;
35	输入	SIGN-			③ PA14=2,2 相指令脉冲方式。
19	模拟速度指令 输入	AS+	Type4	S	外部模拟速度指令输入端子,差分方式,输入阻 抗
20		AS-			10kΩ,输入范围-10V~+10V。
23	模拟地	AGND			模拟输入的地线
21	模拟转矩指令 输入	AT+	Type4		外部模拟转矩指令输入端子,差分方式,输入阻 抗
22		AT—			10kΩ,输入范围-10V~+10V。
24	模拟地	AGND			模拟输入的地线。
1	编码器A相信号	OA+	Type5		1. 编码器 ABZ 信号差分驱动输出(26LS31输
2		OA-			出,相当于 RS422) 2. 非隔离输出(非绝缘)
3	编码器 B 相信号	OB+	Type5		2. Trinipini (Tradak)
4		OB-			
5	编码器Z相信号	OZ+	Type5		
6		OZ-			
7	编码器 Z 相 集电极开路输出	CZ	Туре6		1. 编码器 Z 相信号由集电极开路输出,编码器 Z 相信号出现时,输出 ON (输出导通),否则输出 OFF (输出截止); 2. 非隔离输出(非绝缘); 3. 在上位机,通常 Z 相信号脉冲很窄,故请用高速光电耦合器接收。
9	编码器公共地线	GND			编码器公共地线。
36	屏蔽地线	FG			屏蔽地线端子。

3.3编码器信号输入端子CN2

表3.3 编码器信号输入端子CN2

端子号	信号名称	功能			
		记号	I/O	描述	
14 15 16 17	5V 电源	+5V		伺服电机光电编码器用+5V 电源和公共 地;电缆长度较长时,应使用多根芯线 并联,减小线路压降。	
18 19 20 21 22 23	电源公共地	0V			
1	编码器 A+输入	A+	Type7	与光电编码器 A+相连接	
2	编码器 A-输入	A-		与光电编码器 A一相连接	
3	编码器 B+输入	В+	Type7 与光电编码器 B+相连接		
4	编码器 B-输入	В-		与光电编码器 B-相连接	
5	编码器 Z+输入	Z+	Type7	与光电编码器 Z+相连接	
6	编码器 Z-输入	Z-		与光电编码器 Z-相连接	
7	编码器 U+输入	U+	Type7	与光电编码器 U+相连接	
8	编码器 U-输入	U-		与光电编码器 U-相连接	
9	编码器 V+输入	V+	Type7	与光电编码器 V+相连接	
10	编码器 V-输入	V-		与光电编码器 V-相连接	
11	编码器 W+输入	W+	Type7	与光电编码器 W+相连接	
12	编码器 W-输入	W-		与光电编码器 W-相连接	
26	屏蔽地线	FG		屏蔽地线端子	

3.4 接口端子配置

图 3.1 为伺服驱动器接口端子 CN1 配置图。其中 TB 为 10 芯端子排; CN1 为 36 芯接插件。图 3.2 为伺 服驱动器接口端子 CN2 配置图,CN2 为 26 芯接插件。

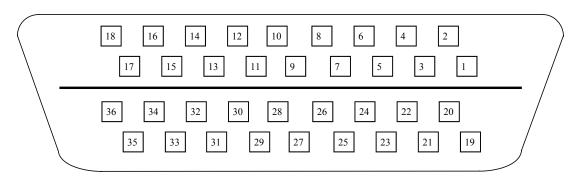


图 3.1 驱动器 CN1 插头(CONTROL)插头焊片(面对插头的焊片看)

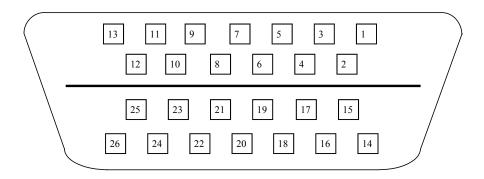
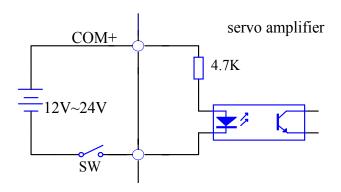
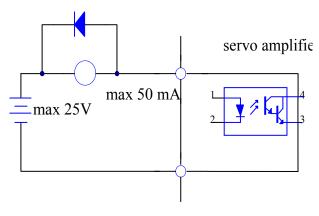
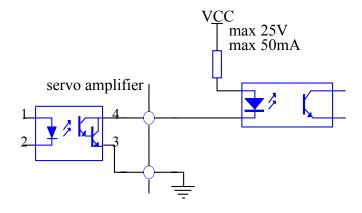


图 3.2 驱动器 CN2 插头(编码器 FEEDBACK) 插头焊片(面对插头的焊片看)

3.5 输入/输出接口类型

3.5.1 开关量输入接口


图3.3 输入信号的连接方法

- (1) 由用户提供电源, DC12~24V, 电流≥100mA;
- (2) 注意,如果电流极性接反,会使伺服驱动器不能工作。

3.5.2 开关量输出接口Type2

A. 继电器连接

B.光电耦合器连接 图3.4 Type2开关量输出接口

- (1)输出为达林顿晶体管,可与继电器或光电耦合器连接;
- (2) 外部电源由用户提供,但是必需注意,如果电源的极性接反,会使伺服驱动器损坏;
- (3)输出为集电极开路形式,最大电流50mA,外部电源最大电压25V。因此,开关量输出信号的负载必须满足这个限定要求。如果超过限定要求或输出直接与电源连接,会使伺服驱动器损坏;
- (4) 如果负载是继电器等电感性负载,必须在负载两端反并联续流二极管。如果续流二极管接反,会使伺服驱动器损坏;
- (5) 输出晶体管是达林顿晶体管。导通时,集电极和发射集之间的压降VCE约为1V左右,不能满足TTL 低电平要求,因此不能和TTL 集成电路直接连接。

3.5.3 脉冲量输入接口Type3

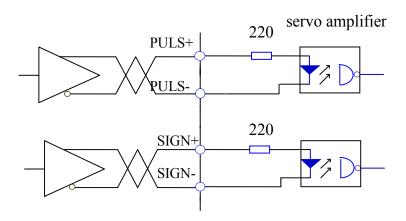


图3.5 Type3脉冲量输入接口的差分驱动方式

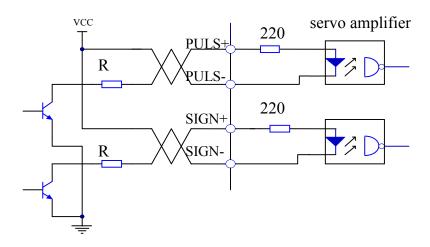


图3.6 Type3脉冲量输入接口的单端驱动方式

- (1)为了正确地传送脉冲量数据,强烈建议采用差分驱动方式;
- (2)差分驱动方式下,采用AM26LS31、MC3487或类似的RS422线驱动器;
- (3)采用单端驱动方式,会使动作频率降低,易受干扰。根据脉冲量输入电路,驱动电流 $10\sim15$ mA,限定外部电源最大电压25V 的条件,确定电阻R 的数值。经验数据: VCC=24V,R= $1.3\sim2$ k; VCC=12V,R= $510\sim820\Omega$; VCC=5V,R= $82\sim120\Omega$ 。
- (4)采用单端驱动方式时,外部电源由用户提供。但必需注意,如果电源极性接反,会使伺服驱动器损坏。
- (5)脉冲输入形式详见表3.7,箭头表示计数沿,表3.8 是脉冲输入时序及参数。当使用2 相输入形式时,其4 倍频脉冲频率≤500KHz。

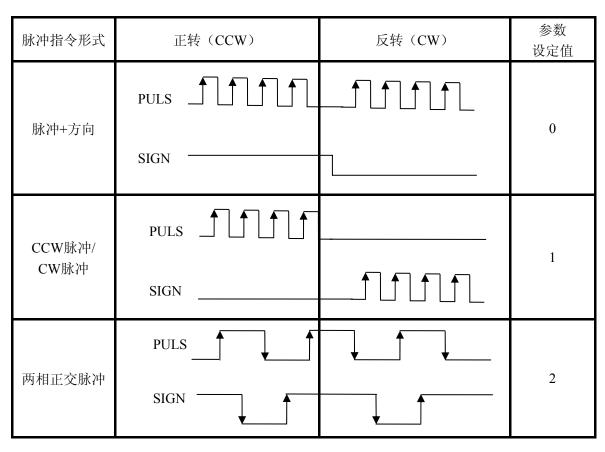


表3.4 脉冲输入形式

- 0: 指令脉冲+符号
- 1: CCW脉冲/CCW脉冲
- 2: 2相指令脉冲

表3.5 脉冲输入时序参数

参数	差分驱动输入	单端驱动输入
t_{ck}	>2μs	>5μs
t_h	>1µs	>2.5μs
t_l	>1µs	>2.5μs
t_{rh}	<0.2μs	<0.3μs
t_{rl}	<0.2μs	<0.3μs
t _s	>1µs	>2.5μs
t_{qck}	>8μs	>10µs
t_{qh}	>4μs	>5μs
t_{ql}	>4μs	>5μs
t_{qrh}	<0.2μs	<0.3μs
t_{qrl}	<0.2μs	<0.3μs
t_{qs}	>1μs	>2.5µs

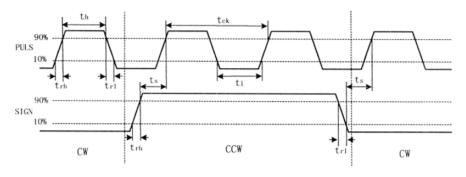


图3.7 脉冲+方向输入接口时序图(最高脉冲频率500kHz)

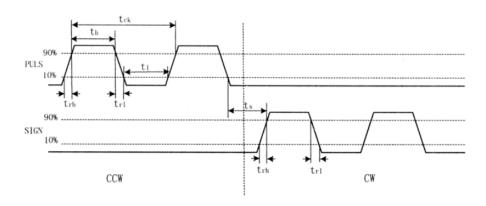


图3.8 CCW脉冲/CW脉冲输入接口时序图(最高脉冲频率500kHz)

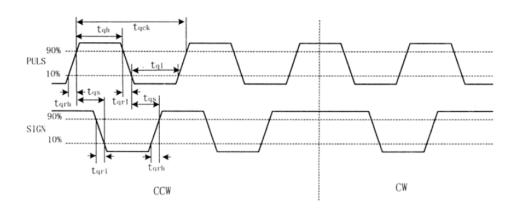


图3.9 两相正交脉冲输入接口时序图(最高脉冲频率125kHz)

3.5.4 模拟输入接口

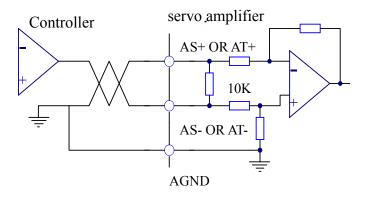


图3.10a 模拟差分输入接口(type4)

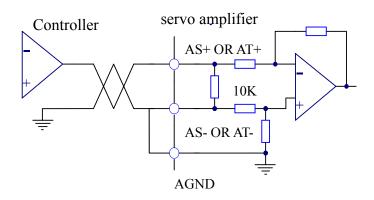


图3.10b 模拟单端输入接口 (type4)

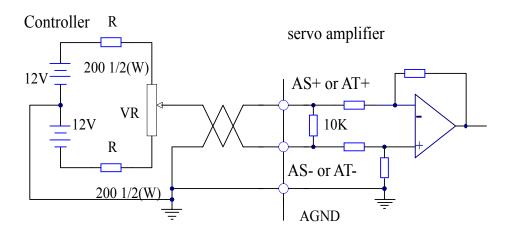


图3.10c 模拟差分电位器输入接口 (type4)

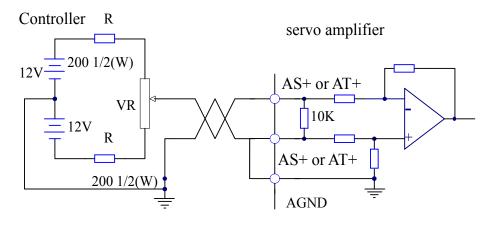


图3.10d 模拟单端电位器输入接口 (type4)

- (1) 模拟输入接口是差分方式,根据接法不同,可接成差分和单端两种形式,输入阻抗为 $10K\Omega$,输入电压范围是 $-10V\sim+10V$;
- (2) 在差分接法中,模拟地线和输入负端在控制器侧相连,控制器到驱动器需要三根线连接;

- (3) 在单端接法中,模拟地线和输入负端在驱动器侧相连,控制器到驱动器需要两根线连接;
- (4) 差分接法比单端接法性能优秀,具有更好的共模干扰抑制特性;
- (5) 输入电压不能超出-10V~+10V 范围, 否则可能损坏驱动器;
- (6) 建议采用屏蔽电缆连接,减小噪声干扰;
- (7) 模拟输入接口存在零偏是正常的,可通过调整参数P047(速度控制方式)或P054(转矩控制方式)对零偏进行补偿;
- (8) 模拟接口是非隔离的(非绝缘)。

3.5.5 编码器信号输出接口

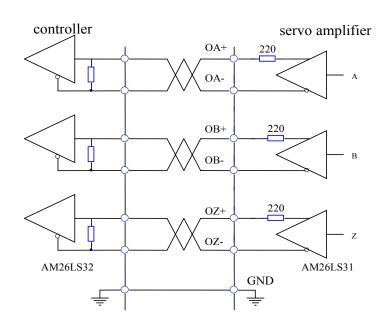


图3.11a 光电编码器输出接口(Type5)

- (1)编码器信号经差分驱动器(AM26LS31)输出;
- (2) 控制器输入端可采用AM26LS32 接收器,必须接终端电阻,约300—330Ω 左右;
- (3) 控制器地线与驱动器地线必须可靠连接;
- (4) 非隔离输出;
- (5) 控制器输入端也可采用光电耦合器接受,但必须采用高速光电耦合器(例如6N137)。

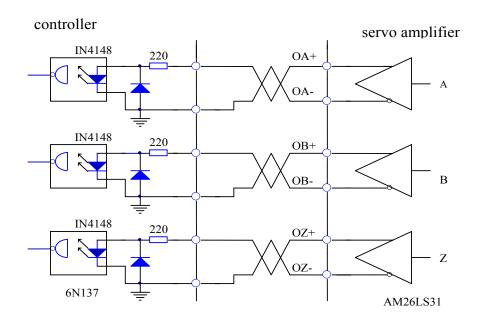


图3.11b 光电编码器输出接口 (Type5)

3.8.6 编码器Z 信号集电极开路输出接口

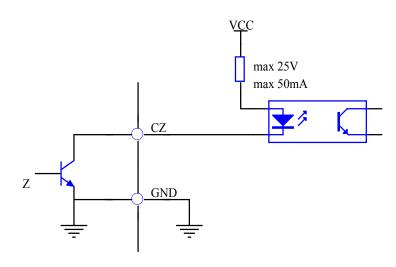


图3.15 光电编码器输出接口 (Type6)

- (1) 编码器Z 相信号由集电极开路输出,编码器Z 相信号出现时,输出ON(输出导通),否则输出OFF(输出截止);
- (2) 非隔离输出(非绝缘);
- (3) 在上位机,通常Z相信号脉冲很窄,故请用高速光电耦合器接收(例如6N137)。

3.5.7 伺服电机光电编码器输入接口

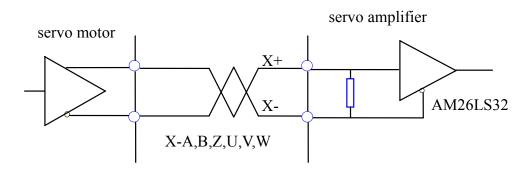


图3.16 伺服电机光电编码器输入接口

第四章 参数

4.1 参数一览表

下表中的出厂值以110ST-M02030为例,带"*"标志的参数在其它型号中可能不一样。

表4.1 用户参数一览表

序号	名称	适用方式	参数范围	出厂值	单位
0	密码	P, S, T	0~9999	315	
1	型号代码	P, S, T	0~99	5*	
2	软件版本(只读)	P, S, T	*	*	
3	初始显示状态	P, S, T	0~20	0	
4	控制方式选择	P, S, T	0~6	0	
5	速度比例增益	P, S	1~200	100*	
6	速度积分时间常数	P, S	1~9999	100*	
7	转矩指令低通滤波器	P, S, T	5000~30000	30000	
8	速度检测低通滤波器	P, S	30~2000	80	
9	位置比例增益	P	1~1000	30	1/S
10	位置前馈增益	P	0~100	0	%
11	位置前馈低通滤波器截止频率	P	1~2000	300	Hz
12	位置指令脉冲分频分子	P	1~9999	1	
13	位置指令脉冲分频分母	P	1~9999	1	
14	位置指令脉冲输入方式	P	0~2	0	
15	位置指令脉冲方向取反	P	0~1	0	
16	定位完成范围	P	0~30000	20	脉冲
17	位置超差检测范围	P	0~30000	400	×100 脉冲
18	位置超差错误无效	P	0~1	0	
19	位置指令平滑滤波器	P	0~3000	0	0.1mS
20	驱动禁止输入无效	P, S, T	0~1	0	
21	JOG 运行速度	S	-3000~3000	120	r/min
22	内外速度指令选择	S	0~1	1	
23	最高速度限制	P, S, T	0~4000	3000	r/min
24	内部速度1	S	-3000~3000	0	r/min
25	内部速度 2	S	-3000~3000	100	r/min
26	内部速度3	S	-3000~3000	300	r/min
27	内部速度 4	S	-3000~3000	-100	r/min
28	到达速度	S	0~3000	500	r/min
29	模拟量转矩指令输入增益	T	10~100	30	0.1V/100%
30	用户转矩过载报警值	P, S, T	1~300	300	%
31	用户转矩过载报警检测时间	P, S, T	1~32767	0	ms

序号	名称	适用方式	参数范围	出厂值	单位
33	模拟量转矩指令输入方向取反	T	0~1	0	
34	内部 CCW 转矩限制	P, S, T	0~300	300*	%
35	内部 CW 转矩限制	P, S, T	-300~0	-300*	%
36	外部 CCW 转矩限制	P, S, T	0~300	100	%
37	外部 CW 转矩限制	P, S, T	-300~0	-100	%
38	速度试运行、JOG运行转矩限制	S	0~300	100	%
39	模拟量转矩指令零偏补偿	T	-2000~2000	0	
40	加速时间常数	S	1~10000	1	mS
41	减速时间常数	S	1~10000	1	mS
42	S型加减速时间常数	S	1~1000	1	mS
43	模拟速度指令增益	S	10~3000	300	(r/min) / V
44	模拟速度指令方向取反	S	0~1	0	
45	模拟速度指令零偏补偿	S	-5000~5000	0	
46	模拟速度指令低通滤波器	S	0~1000	180	Hz
47	电机停止时机械制动器动作设定	P, S, T	0~2000	80	×1.33mS
48	电机运转时机械制动器动作设定	P, S, T	0~2000	40	×1.33mS
49	电机运转时机械制动器动作速度	P, S, T	0~3000	100	r/min
50	转矩控制时速度限制	T	0~5000	3000*	r/min
51	动态电子齿轮有效	P	0~1	0	
52	第二位置指令脉冲分频分子	P	1~9999	1	
53	低 4 位输入端子强制 ON 控制字	P, S, T	0000~1111	0000	二进制
54	高 4 位输入端子强制 ON 控制字	P, S, T	0000~1111	0000	二进制
55	低 4 位输入端子取反控制字	P, S, T	0000~1111	0000	二进制
56	高 4 位输入端子取反控制字	P, S, T	0000~1111	0000	二进制
57	输出端子取反控制字	P, S, T	0000~1111	0000	二进制
58	输入端子去抖动时间常数	P, S, T	1~1000	16	0.1mS
59	演示运行	P, S	0~1	0	

4.2 参数内容

表4.2 用户参数内容详解

序号	名称	功能	参数范围
0	密码	①用于防止参数被误修改。一般情况下,需要设置参数时,先将本参数设置为所需密码,然后设置参数。调 试完后,最后再将本参数设置为 0,确保以后参数不 会被误修改。②密码分级别,对应用户参数、系统参数和全部参数。③修改型号代码参数(PA1)必须使用型号代码密码,其他 密码不能修改该参数。 ④用户密码为 315。 ⑤型号代码密码为 385。	0~9999
1	型号代码	①对应同一系列不同功率级别的驱动器和电机。 ②不同的型号代码对应的参数缺省值不同,在使用恢复 缺省参数功能时,必须保证本参数的正确性。 ③当出现 EEPROM 报警(编号 20),经修复后,必须重 新设置本参数,然后再恢复缺省参数。否则导致驱动 器不正常或损坏。 ④修改本参数时,先将密码 PAO 设置为 385,才能修改本参数。 ⑤参数的详细意义见本章。	0~99
2	软件版本	可以查看软件版本号,但不能修改。	*
3	初始显示状态	选择驱动器上电后显示器的显示状态。 0: 显示电机转速; 1: 显示当前位置低 5 位; 2: 显示当前位置高 5 位; 3: 显示位置指令(指令脉冲积累量)低 5 位; 4: 显示位置偏差低 5 位; 6: 显示位置偏差低 5 位; 6: 显示位置偏差高 5 位; 7: 显示电机转矩; 8: 显示电机电流; 9: 显示直线速度; 10: 显示控制方式; 11: 显示位置指令脉冲频率; 12: 显示速度指令; 13: 显示转矩指令; 14: 显示一转中转子绝对位置; 15: 显示输入端子状态; 16: 显示输出端子状态; 17: 显示编码器输入信号; 18: 显示运行状态; 19: 显示报警代码; 20: 保留。	0~20

序号	名称	功能	参数范围
4	控制方式选择	①通过此参数可设置驱动器的控制方式: 0: 位置控制方式; 1: 速度控制方式; 2: 试运行控制方式; 3: JOG 控制方式; 4: 编码器调零方式。 5: 开环运行方式(用于测试电机及编码器)。 6: 转矩控制方式。 ②位置控制方式,位置指令从脉冲输入口输入。 ③速度控制方式,使置指令从脉冲输入口输入。 ③速度控制方式,速度指令从输入端子输入或模拟量输入,由参数[内外速度指令选择](PA42)决定。使用内 部速度时, SC1 和 SC2 的组合用来选择不同的内部速度 SC1 OFF, SC2 OFF : 内部速度 1 SC1 ON, SC2 OFF : 内部速度 2 SC1 OFF, SC2 ON : 内部速度 3 SC1 ON, SC2 ON : 内部速度 4 ④试运行控制方式,速度指令从键盘输入,用于测试驱动器和电机。 ⑤JOG 控制方式,即点动方式,进入 JOG 操作后,按下 ↑键并保持,电机按 JOG 速度运行,松开按键,电机停转,保持零速;按下↓键并保持,电机按 JOG 速度 反向运行,松开按键,电机停转,保持零速。 ⑥编码器调零方式,用于电机出厂调整编码盘零点。	0~6
5	速度比例增益	①设定速度环调节器的比例增益。 ②设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。 ③在系统不产生振荡的条件下,尽量设定的较大。	1~200
6	速度积分时间常数	①设定速度环调节器的积分时间常数。 ②设置值越小,积分速度越快,刚度越大。参数数值根 据具体的伺服驱动系统型号和负载情况确定。一般情 况下,负载惯量越大,设定值越大。 ③在系统不产生振荡的条件下,尽量设定的较小。	1~9999
7	转矩指令低通滤 波器	①设定转矩指令低通滤波器特性; ②用来抑制由转矩产生的谐振; ③数值越小,截止频率越低,电机产生的振动和噪声越 小。如果负载惯量 很大,可以适当减小设定值。数值 太小,造成响应变慢,可能会引起振 荡。 ④数值越大,截止频率越高,响应越快。如果需要较高 的转矩响应,可以适当增加设定值。	5000~30000
8	速度检测低通滤 波器	①设定速度检测低通滤波器特性。 ②数值越小,截止频率越低,电机产生的噪音越小。如 果负载惯量很大,可以适当减小设定值。数值太小, 造成响应变慢,可能会引起振荡。 ③数值越大,截止频率越高,速度反馈响应越快。如果 需要较高的速度响应,可以适当增加设定值。	30~2000

序号	名称	功能	参数范围
9	位置比例增益	①设定位置环调节器的比例增益。 ②设置值越大,增益越高,刚度越大,相同频率指令脉 冲条件下,位置滞后量越小。但数值太大可能会引起 振荡或超调。 ③参数数值根据具体的伺服驱动系统型号和负载情况确定。	1~1000 /S
10	位置前馈增益	①设定位置环的前馈增益。 ②设定为 100%时,表示在任何频率的指令脉冲下,位 置滞后量总是为 0。 ③位置环的前馈增益增大,控制系统的高速响应特性提 高,但会使系统的位置环不稳定,容易产生振荡。 ④除非需要很高的响应特性,位置环的前馈增益通常为 0。	0~100%
11	位置前馈低通 滤波器 截止频率	①设定位置环前馈量的低通滤波器截止频率。 ②本滤波器的作用是增加复合位置控制的稳定性。	1~2000Hz
12	位置指令脉冲 分频分子	①设置位置指令脉冲的分倍频(电子齿轮)。 ②在位置控制方式下,通过对 PA12, PA13 参数的设置, 可以很方便地与各种脉冲源相匹配,以达到用户理想 的控制分辨率(即角度/脉冲)。 ③ $P \times G = N \times C \times 4$ P: 输入指令的脉冲数; G: 电子齿轮比; $G = \frac{分 频 分 子}{分 频 分 母}$ N: 电机旋转圈数; C: 光电编码器线数/转,本系统 C=2500。 ④ 〖例〗输入指令脉冲为 6000 时,伺服电机旋转 1 圈 $G = \frac{N*C*4}{P} = \frac{1*2500*4}{6000} = \frac{5}{3}$ 则参数 PA12 设为 5, PA13 设为 3。 ⑤电子齿轮比推荐范围为 $\frac{1}{50} \le G \le 50$	1~9999
13	位置指令脉冲 分频分母	见参数 PA12	1~9999
14	位置指令脉冲 输入方 式	①设置位置指令脉冲的输入形式。 ②通过参数设定为3种输入方式之一: 0: 脉冲+符号; 1: CCW 脉冲/CW 脉冲; 2: 两相正交脉冲输入; ③CCW 是从伺服电机的轴向观察,反时针方向旋转,定义为正向。 ④CW 是从伺服电机的轴向观察,顺时针方向旋转,定义为反向。	0~2

序号	名称	功能	参数范围
15	位置指令脉冲 方向取 反	设置为 0: 正常; 1: 位置指令脉冲方向反向。	0~1
16	定位完成范围	①设定位置控制下定位完成脉冲范围。 ②本参数提供了位置控制方式下驱动器判断是否完成 定位的依据。当位置偏差计数器内的剩余脉冲数小于 或等于本参数设定值时,驱动器认为定位已完成,定 位完成信号 COIN ON,否则 COIN OFF。 ③在位置控制方式时,输出定位完成信号 COIN,在其 它控制方式时,输出速度达到信号 SCMP。	0~30000脉冲
17	位置超差检测范 围	①设置位置超差报警检测范围。 ②在位置控制方式下,当位置偏差计数器的计数值超过 本参数值时,伺服驱动器给出位置超差报警。	0~30000 ×100 脉冲
18	位置超差错误无 效	设置为 0: 位置超差报警检测有效; 1: 位置超差报警检测无效,停止检测位置超差错误。	0~1
19	位置指令平滑滤 波器	①对指令脉冲进行平滑滤波,具有指数形式的加减速,数值表示时间常数; ②滤波器不会丢失输入脉冲,但会出现指令延迟现象; ③此滤波器用于 L位控制器无加减速功能; 电子齿轮分倍频较大(>10); 指令频率较低; 电机运行时出现步进跳跃、不平稳现象。 ④当设置为0时,滤波器不起作用。	0~3000mS
20	驱动禁止输入无 效	设置为 0: CCW、CW输入禁止有效。当 CCW 驱动禁止开关 (FSTP) ON 时, CCW 驱动允许; 当 CCW 驱动禁止开 关 (FSTP) OFF 时, CCW 方向转矩保持为 0; CW 同 理。如果 CCW、CW 驱动禁止都 OFF,则会产生驱动 禁止输入错误报警。 1: 取消 CCW、CW 输入禁止。不管 CCW、CW 驱动禁 止开关状态如何, CCW、CW 驱动都允许。同时,如果 CCW、CW 驱动禁止都 OFF,也不会产生驱动禁止输入错误报警。	0~1
21	JOG 运行速度	设置 JOG 操作的运行速度。	-3000~3000 r/min
22	内外速度指令选 择	① 设置为 0 时,速度指令取自内部速度; ② 设置为 1 时,速度指令取自外部模拟量输入;	0~1
23	最高速度限制	①设置伺服电机的最高限速。 ②与旋转方向无关。 ③如果设置值超过额定转速,则实际最高限速为额定转速。	0~400 0 r/min
24	内部速度 1	①设置内部速度 1 ②速度控制方式下,当 SC1 OFF, SC2 OFF 时,选择内 部速度 1 作为速度指令。	-3000~3000 r/min

序号	名称	功能	参数范围
25	内部速度 2	①设置内部速度 2 ②速度控制方式下,当 SC1 ON, SC2 OFF 时,选择内 部速度 2 作为速度指令。	-3000~3000 r/min
26	内部速度 3	①设置内部速度 3 ②速度控制方式下,当 SC1 OFF, SC2 ON 时,选择内 部速度 3 作为速度指令。	-3000~3000 r/min
27	内部速度 4	①设置内部速度 4 ②速度控制方式下,当 SC1 ON, SC2 ON 时,选择内部 速度 4 作为速度指令。	-3000~3000 r/min
28	到达速度	①设置到达速度。 ②在非位置控制方式下,如果电机速度超过本设定值,则 SCMP ON,否则 SCMP OFF。 ③在位置控制方式下,不用此参数。 ④与旋转方向无关。 ⑤比较器具有迟滞特性。	0~3000 r/min
29	模拟量转矩指令 输入 增益	 ① 设定模拟量转矩输入电压和电机实际运行转矩之间的比例关系; ② 设定值的单位是 0.1V/100%; ③ 缺省值为 30,对应 3V/100%,即输入 3V 电压产生100%的额定转矩。 	10~100 (0.1V/100%)
30	用户转矩过载报警 检测	设置用户转矩过载值,该值为额定转矩的百分率,转矩限制值不分方向,正反向都保护; 在PA31>0情况下,当电机转矩>PA30,持续时间>PA31情况下,驱动器报警,报警号为Err-29,电机停转。报警产生后,驱动器必须重新上电清除报警。	1~300
31	用户转矩过载报警 检测时间	用户转矩过载检测时间,单位毫秒; 设置为0时,用户转矩过载报警功能禁止; 一般情况下,该参数设置为0。	1~32767
33	模拟量转矩指令 输入 方向取反	① 对模拟量转矩输入的极性反向。 ② 设置为 0 时,模拟量转矩指令为正时,转矩方向为 CCW;设置为 1 时,模拟量速度指令为正时,转矩 方向为 CW;	0~1
34	内部 CCW 转矩 限制	①设置伺服电机 CCW 方向的内部转矩限制值。 ②设置值是额定转矩的百分比,例如设定为额定转矩的 2倍,则设置值为 200。 ③任何时候,这个限制都有效。 ④如果设置值超过系统允许的最大过载能力,则实际转 矩限制为系统允许的最大过载能力。	0~300%
35	内部 CW 转矩限制	①设置伺服电机 CW 方向的内部转矩限制值。 ②设置值是额定转矩的百分比,例如设定为额定转矩的 2倍,则设置值为一200。 ③任何时候,这个限制都有效。 ④如果设置值超过系统允许的最大过载能力,则实际转 矩限制为系统 允许的最大过载能力。	-300~0%

序号	名称	功能	参数范围
36	外部 CCW 转矩限制	①设置伺服电机 CCW 方向的外部转矩限制值。 ②设置值是额定转矩的百分比,例如设定为额定转矩的 1倍,则设置值为 100。 ③仅在 CCW 转矩限制输入端子 (FIL) ON 时,这个限 制才有效。 ④ 当限制有效时,实际转矩限制为系统允许的最大过载 能力、内部 CCW 转矩限制、外部 CCW 转矩限制三 者中的最小值。	0~300%
37	外部 CW 转矩限 制	①设置伺服电机 CW 方向的外部转矩限制值。 ②设置值是额定转矩的百分比,例如设定为额定转矩的 1倍,则设置值为一100。 ③仅在 CW 转矩限制输入端子(RIL)ON 时,这个限制 才有效。 ④当限制有效时,实际转矩限制为系统允许的最大过载 能力、内部 CW 转矩限制、外部 CW 转矩限制三者中 的绝对值的最小值。	-300~0%
38	速度试运行、JOG 运行转矩限制	①设置在速度试运行、JOG 运行方式下的转矩限制值。 ②与旋转方向无关,双向有效。 ③设置值是额定转矩的百分比,例如设定为额定转矩的1倍,则设置值为 100。 ④内外部转矩限制仍然有效。	0~300%
39	模拟量转矩指令 零偏补偿	对模拟量转矩输入的零偏补偿量	-2000~2000
40	加速时间常数	①设置值是表示电机从 0~1500r/min 的加速时间。 ②加减速特性是线性的。 ③仅用于速度控制方式,位置控制方式无效; ④如果驱动器与外部位置环组合使用,此参数应设置为0。	1~10000mS
41	减速时间常数	①设置值是表示电机从 1500~0r/min 的减速时间。 ②加减速特性是线性的。 ③仅用于速度控制方式,位置控制方式无效; ④如果驱动器与外部位置环组合使用,此参数应设置为0。	1~10000mS
42	S 型加减速时间常 数	使电机平稳启动和停止,设定 S 型加减速曲线部分时间。	1~1000mS
43	模拟量速度指令 输入增益	设定模拟量速度输入电压和电机实际运转速度之间 的比例关系。	10~3000 r/min/V
44	模拟量速度指令 方向取反	①对模拟量速度输入的极性反向。 ②设置为 0 时,模拟量速度指令为正时,速度方向为 CCW;设置为 1 时,模拟量速度指令为正时,速度方 向为 CW;	0~1
45	模拟量速度指令 零偏补偿	对模拟量速度输入的零偏补偿量。	-5000~5000
46	模拟量速度指令 低通 滤波器	 对模拟量速度输入的低通滤波器。 设置越大,对速度输入模拟量响应速度越快,信号 噪声影响越大; 设置越小,响应速度越慢,信号噪 声影响越小。 	0~1000Hz

序号	名称	功能				
47	电 机 停 止 时 机械制动 器动作设定	① 定义电机停转期间从机械制动器动作(输出端子BRK 由 ON 变成 OFF)到电机电流切断的延时时间; ② 此参数不应小于机械制动的延迟时间(Tb),以避免电机的微小位移或 工件跌落; ③ 相应时序参见图 7.4。				
48	电 机 运 转 时机械制动器动作设定	 定义电机运转期间从电机电流切断到机械制动器动作(输出端子 BRK由 ON 变成 OFF)的延时时间; 此参数是为了使电机从高速旋转状态减速为低速后,再使机械制动器动作,避免损坏制动器; 实际动作时间是 PA48 或电机减速到 PA49 数值所需时间,取两者中的最小值。 相应时序参见图 7.5。 				
49	电 机 运 转 时机械制动器动作速度	① 定义电机运转期间从电机电流切断到机械制动器动作(输出端子 BRK 由 ON 变成 OFF)的速度数值。 ② 实际动作时间是 PA48 或电机减速到 PA49 数值所需时间,取两者中的最小值。 ③ 相应时序参见图 7.5。				
50	转矩控制时速 度限制	① 在转矩控制时,电机运行速度限制在本参数以内; ② 可防止轻载出现超速现象。				
51	动态电子齿轮 有效	① 设置为 0, 动态电子齿轮无效,输入端子 INH 的功能是指令脉冲禁止。 ② 设置为 1, 动态电子齿轮有效,输入端子 INH 的功能 是电子齿轮切换。当 INH 端子 0FF 时,输入电子齿轮 为 No. 12/No. 13;当 INH 端子 0N 时,输入电子齿轮为 No. 54/No. 13;通过控制 INH 端子,改变电子齿轮比 例数值。				
52	第二位置指令脉冲分频分子	① 设置第二位置指令脉冲的分倍频(电子齿轮)。 ② 使用动态电子齿轮必须设置参数 PA51=1,此时输入 端子 INH(指令脉冲禁止)功能转变为电子齿轮切换输 入控制端子; ③ 当 INH 端子 OFF 时,输入电子齿轮为 PA12/PA13;当 INH 端子 ON 时,输入电子齿轮为 PA52/PA13;通过控制 INH 端子,改变电子齿轮比例数值。 ④ 注意第一、第二电子齿轮分频分母是一样的。			ţ,	
53	低 4 位输入端 子强制 ON 控制字	① 设置输入端子内部强制 ON 有效。未强制 ON 的端子,需要在外部连线控制 ON/OFF,已强制 ON 的端子,不需要在外部连线,驱动器内部自动置 ON 用 4 位二进制数表示,该位为 0 表示代表的输入端子不强制 ON,1 表示代表的输入端子强制 ON。二进制数代表的输入端子如下:				
		3 2	1	0		
		RSTP FSTP ALRS SON				
		SON: 伺服使能; ALRS: 报警清除; FSTP: CCW 驱动禁止; RSTP: CW 驱动禁止;				

							100110	
序号	名称			功能			参数范围	
		线控制 ON/C 置 ON 用 4 位二进制	DFF,已强制(引数表示,该位	ON 的端子,不 五为 0 表示代表	未强制 ON 的端子, 需要在外部连线,驱 的输入端 子不强制 C 输入端子如下:	动器内部自动	0000~1111	
54	高 4 位 输入端子强制	3	2	1	0			
34	ON 控制字	RIL	FIL	INH/SC2	CLE/SC1/ZEROSPD			
		箝位;	冷脉冲禁止/返	计数器清零/速 速度选择 2; F	度选择 1/零速 IL: CCW 转矩			
					,在开关闭合时有效,	开关断开时	0000~1111	
55	低 4 位输入端子取反	② 用4位	二进制数表示,	该位为0表示	开关断开时有效。 示代表的输入端 子不足 的输入端子如下: 0	双反,为1表		
	控制字	RSTP	FSTP	ALRS	SON			
		SON: 伺服化 CW 驱动禁止		报警清除;	FSTP: CCW 驱动禁	止; RSTP:		
56	① 设置输入端子取反。不取反的端子,在开关闭合时有效,开关断开时无效;取反的端子,在开关闭合时无效,开关断开时有效。 ② 用4位二进制数表示,该位为0表示代表的输入端子不取反,为1表高4位 示代表的输入端子取反。二进制数代表的输入端子如下:					Q反,为 1 表	0000~1111	
	输入端子取反 控制字	3	2	1	0			
		RIL	FIL	INH/SC2	CLE/SC1/ZEROSPD			
		CLE/SC1/ZEROSPD: 偏差计数器清零/速度选择 1/零速箝位; INH/SC2: 指令脉冲禁止/速度选择 2; FIL: CCW 转矩限制; RIL: CW 转矩限制。						
57	输出端子	义正好和标准 ② 用 4 位	注定义相反; 二进制数表示,	该位为0表示	序通和截止的定 示代表的输出端 子不耳 的输入端子如下:	双反,为 1表	0000~1111	
	取反控制字	3	2	1	0			
		RSTP	FSTP	ALRS	SON			
		ALM: 伺服 COIN: 定位	SRKN: 伺服准备好; ALM: 伺服报警; COIN: 定位完成/速度到达; BRK: 机械制动释放。					

序号	名称	功能	参数范围
58	Io 输入端子去 抖动时 间常数	 对输入端子去抖动滤波时间; 数值越小,端子输入响应越快; 数值越大,端子输入抗干扰性能越好,但响应变慢。 	1~1000×0.1 mS
59	演示运行	测试专用	0~1

4.3 型号代码参数与电机对照表

请咨询厂家提供。

第五章 报警与保护功能

5.1 报警一览表

表 5.1 报警一览表

报警代码	报警名称	内容
	正常	
1	超速	伺服电机速度超过设定值
2	主电路过压	主电路电源电压过高
3	主回路继电器控制异常	主回路继电器控制异常
4	位置超差	位置偏差计数器的数值超过设定值
5	保留	保留
6	速度放大器饱和故障	速度调节器长时间饱和
7	驱动禁止异常	CCW、CW 驱动禁止输入都 OFF
8	保留	
9	编码器故障	编码器信号错误
12	IPM 模块故障	IPM 智能模块故障
13	保留	保留
14	制动故障	制动电路故障
15	编码器计数错误	编码器计数异常
19	热复位	系统被热复位
22	编码器相位错	编码器相位错误
29	用户转矩过载报警	电机负载超过用户设定的数值和持续时间
31	编码器 UVW 信号错误	编码器 UVW 信号错误或与编码器不匹配
32	编码器 UVW 信号非法编码	UVW 信号存在全高电平或全低电平

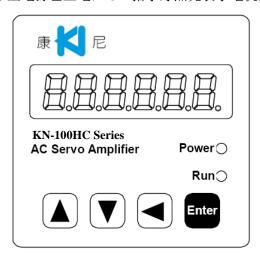
5.2 报警原因与处理方法

报警代码	报警名称	运行状态	原因	处理方法
1	超速	接通控制电源 时出现	①控制电路板故障。 ②编码器故障。	①换伺服驱动器。 ②换伺服电机。
		电机运行过程	输入指令脉冲频率过高。	正确设定输入指令脉冲。
		中出现	加/减速时间常数太小,使速度超调量过大。	增大加/减速时间常数。
			输入电子齿轮比太大。	正确设置。
			编码器故障。	换伺服电机。
			编码器电缆不良。	换编码器电缆。
			伺服系统不稳定,引起超调。	①重新设定有关增益。 ②如果增益不能设置到合 适 值,则减小负载转动惯量比 率。
		电机刚启动时 出现	①负载惯量过大。	①减小负载惯量。 ②换更大功率的驱动器和电机。
			①编码器零点错误。	①换伺服电机。 ②请厂家重调编码器零点。
			①电机 U、V、W 引线接错。 ②编码器电缆引线接错。	正确接线。
2	主电路过压	接通控制电源 时出现	电路板故障。	换伺服驱动器。
		接通主电源时出现	①电源电压过高。 ②电源电压波形不正常。	检查供电电源。
		电机运行过程	制动电阻接线断开。	重新接线。
		中出现	①制动晶体管损坏。 ②内部制动电阻损坏。	换伺服驱动器。
			制动回路容量不够。	①降低起停频率。 ②增加加/减速时间常数。 ③减小转矩限制值。 ④减小负载惯量。 ⑤换更大功率的驱动器和 电机。
3	主回路继电	主回路电源不稳定		检查供电电源
	器控制异常	电路板故障		更换驱动器

报警代码	报警名称	运行状态	原因	处理方法
4	位置超差	接通控制电源 时出现	电路板故障。	换伺服驱动器。
		接通主电源及控制线,输入	①电机 U、V、W 引线接错。 ②编码器电缆引线接错。	正确接线。
		指令脉冲, 电机不转动	编码器故障。	换伺服电机
		电机运行过程 中出现	设定位置超差检测范围太小。	增加位置超差检测范围。
			位置比例增益太小。	增加增益。
			转矩不足。	① 检查转矩限制值。 ② 减小负载容量。 ③ 换更大功率的驱动器和电 机。
			指令脉冲频率太高。	降低频率。
6	速度放大器	电机运行过程	电机被机械卡死。	检查负载机械部分。
	饱和故障	中出现	负载过大。	①减小负载。 ②换更大功率的驱动器和电 机。
7	驱 动禁止异常		CCW、CW 驱动禁止输入端子 都断开。	检查接线、输入端子用电源。
9	编码器故障		编码器接线错误。	检查接线。
			编码器损坏。	更换电机。
			编码器电缆不良。	换电缆。
			编码器电缆过长,造成编码器 供电电压偏低。	①缩短电缆。 ②采用多芯并联供电。
		接通控制电源 时出现	电路板故障。	换伺服驱动器。
			①供电电压偏低。 ②过热。	①检查驱动器。 ②重新上电。 ③更换驱驱动器。
12	IPM 模块故 障		驱动器U、V、W之间短路	检查接线。
		过程中出现	接地不良。	正确接地。
			电机绝缘损坏。	更换电机。
			受到干扰。	①增加线路滤波器。 ②远离干扰源。

报警代码	报警名称	运行状态	原因	处理方法
13	过负载	接通控制电源 时出现	电路板故障。	换伺服驱动器。
		电机运行过程 中出现	超过额定转矩运行。	①检查负载。 ②降低起停频率。 ③减小转矩限制值。 ④换更大功率的驱动器和电机
			保持制动器没有打开。	检查保持制动器。
			电机不稳定振荡。	①调整增益。 ②增加加/减速时间。 ③减小负载惯量。
			①U、V、W有一相断线。 ②编码器接线错误。	检查接线。
14	制动故障	接通控制电源 时出现	电路板故障。	更换伺服驱动器。
			制动电阻接线断开。	重新接线。
		电机运行过程 中出现	①制动晶体管损坏。 ②内部制动电阻损坏。	换伺服驱动器。
		平山 观	制动回路容量不够。	①降低起停频率。 ②增加加/减速时间常数。 ③减小转矩限制值。 ④减小负载惯量。 ⑤换更大功率的驱动器和电机。
			主电路电源过高。	检查主电源。
15	编码器计数 错误		① 编码器损坏。 ② 编码器线数不对 ③ 编码器盘片损伤 ④ 编码器存在虚假 Z 信号(一 转中有多个 Z 脉冲)	更换编码器。
			编码器接线错误。	检查接线。
			接地不良。	 正确接地。 检查屏蔽地线是否接好。
			受到干扰。	①增加线路滤波器。 ②远离干扰源。
22	编码器相位错		编码器A、B、Z信号传输错或受 干扰	检查编码器A、B、Z信号 及连线
			电路板故障	更换驱动器

报警代码	报警名称	运行状态	原因	处理方法
31	编码器 UVW 信号错误		 编码器 UVW 信号损坏 编码器 Z 信号损坏 电缆不良 电缆屏蔽不良 屏蔽地线未联好 编码器接口电路故障 	① 更换编码器 ② 检查编码器接口电路
32	编码器 UVW 信号非法编 码		 编码器 UVW 信号损坏 电缆不良 电缆屏蔽不良 屏蔽地线未联好 编码器接口电路故障 	① 更换编码器 ② 检查编码器接口电路



第六章 显示与键盘操作

面板由 6 个 LED 数码管显示器和 4 个按键 ↑、↓、←、Enter 组成,用来显示系统各种状态、设置参数 等。操作是分层操作, ←、Enter 键表示层次的后退和前进,Enter 键有进入、确定的意义, ←键有退出、取 消的意义; ↑、↓键表示增加、减少序号或数值大小。如果按下 ↑、↓键并 保持,则具有重复效果,并且保持时间越长,重复速率越高。

如果 6 个数码管或最右边数码管的小数点显示闪烁,表示发生报警。

POWER 指示灯点亮表示主电源已上电, RUN 指示灯点亮表示电机正在运转。

6.1 第1层

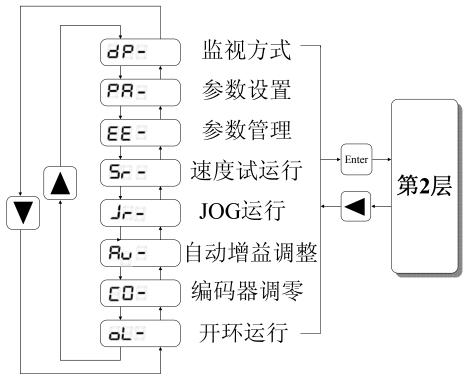


图 6.1 方式选择操作框图

第 1 层用来选择操作方式,共有 7 种方式,用 ↑ 、 ↓ 键改变方式,按Enter 键进入选定的方式的第 2 层,按 ← 键从第 2 层退回第 1 层。

6.2 第2层

6.2.1 监视方式

在第 1 层中选择"dP- ",并按 Enter 键就进入监视方式。共有 21 种显示状态,用户用 ↑、↓键选择需要的显示模式,再按 Enter 键,就进入具体的显示状态了。

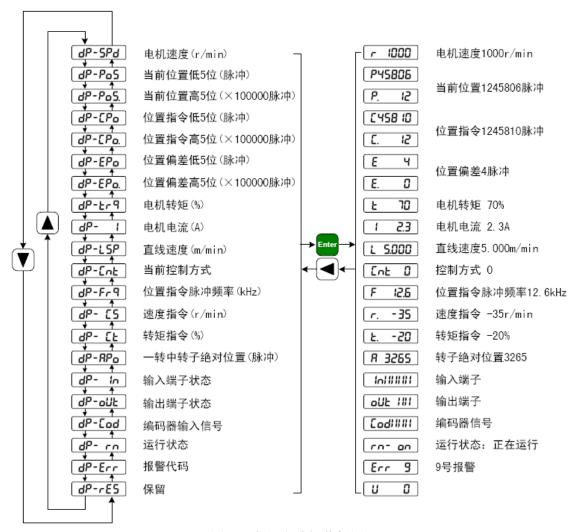


图 6.2 监视方式操作框图

注1: 输入脉冲量为经过输入电子齿轮放大后的脉冲。

注2: 脉冲量单位是系统内部脉冲单位,在本系统中 10000 脉冲/转。脉冲量用高 5 位+低 5 位表示,计算方法为

脉 冲 量 = 高 5 位 数 值 ξ 100000 + 低 5 位 数 值

注3:控制方式: 0-位置控制; 1-速度控制; 2-速度试运行; 3-JOG 运行; 4-编码器调零; 5-开环运行。

注4: 如果显示数字达到6位(如显示-12345),则不再显示提示字符。

注5: 位置指令脉冲频率是在输入电子齿轮放大之前实际的脉冲频率,最小单位 0.1kHz,正 转方向显示正数,反转方向显示负数。

注6: 电机电流 I 的计算方法是

$$I = \sqrt{\frac{1}{3}(I_U^2 + I_V^2 + I_W^2)}$$

表示相电流有效值。

注7: 一转中转子绝对位置表示转子在一转中相对定子所处的位置,以一转为一个周期,范围是 0~9999。

注8:输入端子显示如图 6.3 所示,输出端子显示如图 6.4 所示,编码器信号显示如图 6.5 所示。

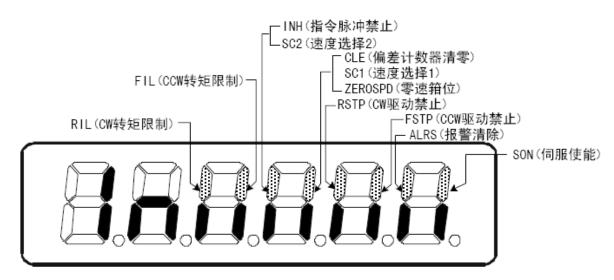


图 6.3 输入端子显示(笔划点亮表示 ON, 熄灭表示 OFF)

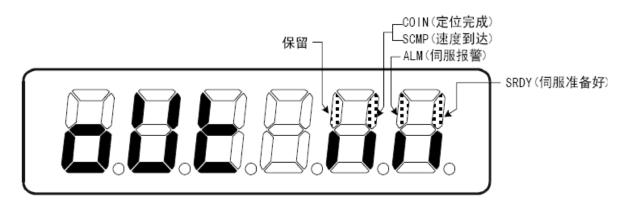


图 6.4 输出端子显示(笔划点亮表示 ON, 熄灭表示 OFF)

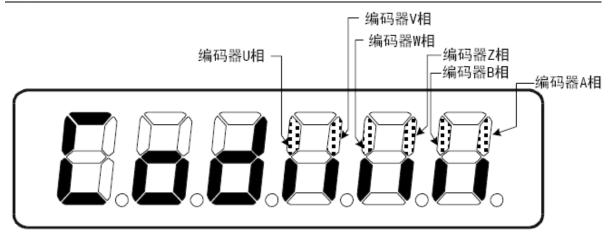


图 6.5 编码器信号显示(笔划点亮表示 ON, 熄灭表示 OFF)

注9: 运行状态表示为:

- ① "cn- oFF": 主电路未充电, 伺服系统没有运行;
- ② "cn- Ck": 主电路已充电, 伺服系统没有运行(伺服没有使能或存在报警);
- ③ "cn- on": 主电路已充电,伺服系统正在运行。

注10:报警显示"Err --"表示正常,无报警。

6.2.2 参数设置

在第1层中选择"PA- ",并按 Enter 键就进入参数设置方式。用↑、↓键选择参数号,按 Enter 键,显示该参数的数值,用↑、↓键可以修改参数值。按↑或↓键一次,参数增加或减少 1,按下并保持↑或↓ 键,参数能连续增加或减少。参数值被修改时,最右边的 LED 数码管小数点点亮,按 Enter 键确定修改数值 有效,此时右边的 LED 数码管小数点熄灭,修改后的数值将立刻反映到控制中,此后按↑或↓键还可以继 续修改参数,修改完毕按←键退回到参数选择状态。如果对正在修改的数值不满意,不要按 Enter 键确定,可按←键取消,参数恢复原值,并退回到参数选择状态。

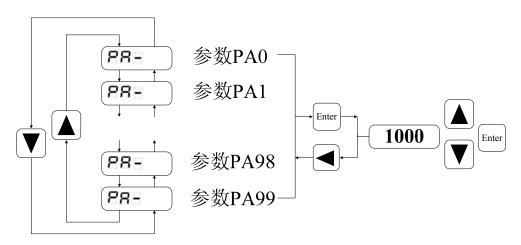


图 6.6 参数设置操作框图

6.2.3 参数管理

参数管理主要处理内存和EEPROM之间操作,在第l层中选择"E-",并按 ^{Enter} 键进入参数管理方式。

参数管理方式中有5种操作模式,用 ▲ 、 ▼ 键来选择。以"参数写入"为例,选择"EE-SEt",然后按下 键并保持3秒以上,显示器显示"StArt"表示参数正在写入EEPROM,大约等待1~2秒后,如果写操作成功,显示器显示"Finish",如果写操作失败,则显示"Error"。

再可按 健退回到操作模式选择状态。

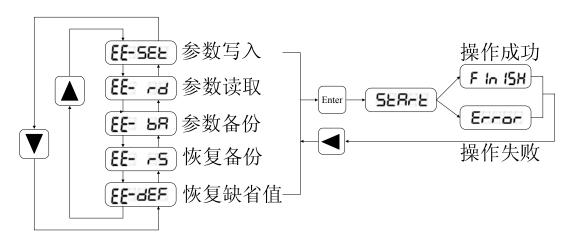


图6.7 参数管理操作框图

——EE-SEt 参数写入:表示将内存中的参数写入EEPROM参数区。

用户修改参数后,仅使内存中参数值改变了,下次上电又会恢复成原来的数值。如果想永久改变参数值,就需要执行参数写入操作,将内存中参数写入到EEPROM的参数区中,以后上电就会使用修改后的参数。

——EE-rd 参数读取:表示将EEPROM的参数区的数据读到内存中。

这个过程在上电时会自动执行一次,因此刚上电后,内存里的参数值与EEPROM参数区中的值是一样的。但当用户修改了参数,就会改变内存中的参数值,当用户对修改后的参数不满意或参数被调乱时,执行参数读取操作,可将EEPROM参数区中的数据再次读到内存中,即恢复成刚上电的参数。

——EE-bA 参数备份:表示将内存中的参数写入EEPROM的备份区。

整个EEPROM分成参数区和备份区两个区域,可以存储两套参数。系统上电、参数写入和参数 读取操作使用EEPROM的参数区,而参数备份和恢复备份操作则使用EEPROM的备份区。在参数设置 过程中,如果用户对一组参数比较满意,但还想继续修改,可以先执行参数备份操作,保存内存 参数到EEPROM的备份区,然后再继续修改参数,如果效果变差,可以用恢复备份操作,将上次保存在EEPROM的备份区的参数读到内存中,然后可以再次修改或结束。

另外, 当用户设置好参数后, 可以执行参数写入和参数备份两个操作, 使EEPROM的参数区和

备份区的数据完全一样;当以后参数不慎被修改时,可以启用恢复备份操作,将EEPROM备份区的数据读到内存中,再用参数写入操作,将内存参数写入到EEPROM的参数区中。

——EE-rS 恢复备份:表示将EEPROM备份区的数据读到内存中。

注意这个操作没有执行参数写入操作,下次上电时还是将EEPROM参数区的数据读到内存中。如果用户想使永久使用EEPROM的备份区的参数,还需要执行一次参数写入操作。

——EE-dEF 恢复缺省值:表示将所有参数的缺省值(出厂值)读到内存中,并写入到EEPROM的参数区中,下次上电将使用缺省参数。

当用户将参数调乱,无法正常工作,或保存参数时系统恰好掉电时,使用这个操作,可将所有参数恢复成出厂状态。因为不同驱动器和电机型号对应的理想参数不同,用户需进行检查和调整。

图 6.8 参数管理操作意义

6.2.4 速度试运行

在第1层中选择"Sr- ",并按 Enter 键就进入试运行方式。速度试运行提示符为"S",数值单位是 r/min,系统处于速度控制方式,速度指令由按键提供,用 ↑、↓键可以改变速度指令,电机按给定的速度运行。

图 6.9 速度试运行操作框图

6.2.5 JOG运行

在第 1 层中选择"Jr- ",并按 Enter 键就进入 JOG 运行方式,即点动方式。JOG 运行提示符为"J",数值单位是 r/min,系统处于速度控制方式,速度指令由按键提供。进入 JOG 操作后,按下 ↑ 键并保持,电 机按 JOG 速度运行,松开按键,电机停转,保持零速;按下 ↓ 键并保持,电机按 JOG 速度反向运行,松开按键,电机停转,保持零速。JOG 速度由参数 PA21 设置。

图 6.10 JOG 运行操作框图

第七章 运 行

7.1 接地

将伺服驱动器和电机可靠地接地,同时为了避免触电,伺服驱动器的保护性接地端子与控制箱的保护性接地应始终接通。由于伺服驱动器使用PWM技术通过功率管给伺服电机供电,驱动器和连接线可能受到开关噪声的影响,为了符合EMC标准,因此接地线尽可能的粗,使接地电阻尽可能小。

7.2 工作时序

7.2.1 电源接通次序

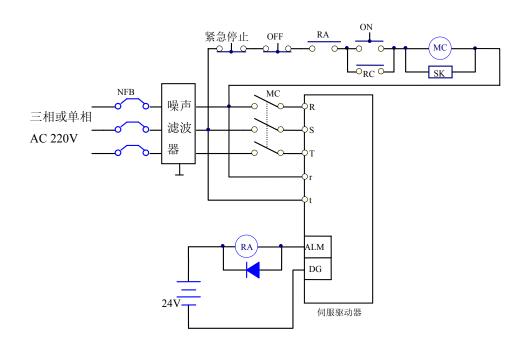


图7.1 电源连接接线图

- 1) 通过电磁接触器将电源接入主电路电源输入端子(使用三相电源时接R、S、T,使用单相电源时接R、S)。
- 2) 控制电路的电源r、t与主电路电源同时或先于主电路电源接通。如果仅接通了控制电路的电源, 伺服准备好信号(RKN) 为0FF。
- 3) 主电路电源接通后,可以接受伺服使能(SON)信号,检测到伺服使能有效,基极电路开启,电机激励,处于运行状态,伺服准备好信号(RKN)ON,此时,检测到伺服使能无效或有报警,则基极电路关闭,电机处于自由状态。

4) 当伺服使能与电源一起接通时,基极电路大约在1.5秒后接通。频繁接通、断开电源,可能损坏软启动电路和能耗制动电路,接通断开的频率最好限制在每小时5次,每天30次以下。如果因为驱动器或电机过热,在将故障原因排除后,还要经过30分钟冷却,才能再次接通电源。

7.2.2 时序图

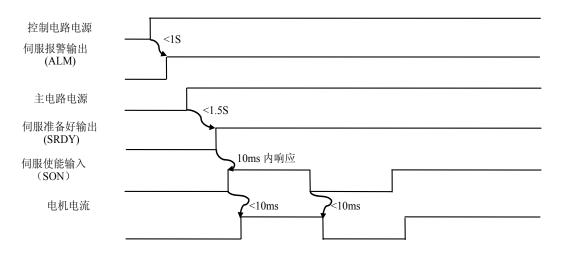


图7.2 电源接通时序图

图7.3 报警时序图

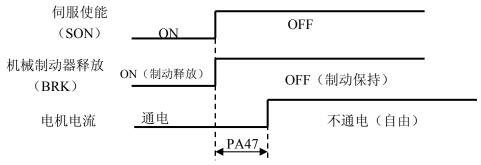


图7.4 电机停止时机械制动器动作

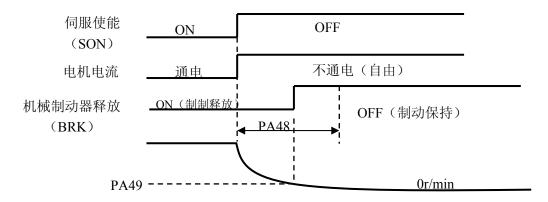


图7.5电机运转时机械制动器动作时序

7.3 注意事项

启动、停止的频率受伺服驱动器、电机、负载惯量的限制,必须要同时满足两个条件。

1、伺服驱动器所允许的频率

用于启动、停止频率高的场合,要事先确认是否在允许的频率范围内。允许的频率范围随电机种类、容量、负载惯量、电机转速的不同而不同。首先设置加减速时间防止过大的再生能量(在位置控制方式下,设置上位控制器输出脉冲的加减速时间或设置驱动器参数PA19;在速度控制方式下,设置驱动器参数PA40和PA41)。在负载惯量为m倍电机惯量的条件下,伺服电机所允许的启停频率如下:

负载惯量倍数	允许启停频率(仅为参考)		
m≤3	>100次/分钟,加减速时间60ms或更少		
m≥5	60-100次/分钟,加减速时间150ms或更少		
m>5	〈60次/分钟,加减速时间150ms以上		

如果还不能满足要求,可以采用减小内部转矩限制(参数 PA34,PA35),降低电机最高转速(参数 PA23)的方法。

2、伺服电机所允许的启停频率随负载条件、运行时间等因素而不同,请具体参考电机说明 书。

- 一般负载惯量倍数在 5 倍以内,在大负载惯量下使用,可能会经常发生在减速时主电路过电压或制动异常,这时可以采用下面方法处理:
 - ① 减小内部转矩限制(参数 PA34,PA35);
 - ② 降低电机最高转速(参数 PA23);
 - ③ 安装外加的再生装置。

伺服驱动器内装有编码器的供电电源,为了保证编码器正常工作,必须维持其输出电压 5V ±5%。当用 户使用很长的电缆线时,可能会造成电压损失,在这种情况下,请使用多芯线对编码器供电,以减少电缆线上的压降。

7.4 试运行

7.4.1 运行前的检查

安装和连线完毕之后,在开机之前先检查以下几项:

- ——连线是否正确?尤其是R、S、T和U、V、W是否有松动的现象?
- ——输入电压是否正确?
- ——是否有短路现象?
- ——电机连接电缆有无短路或接地?
- ——编码器电缆连接好否正确?
- ——输入端子的电源极性和大小是否合适?

7.4.2 通电试运行

- 1、在通电之前
 - ① 电机空载, 电机轴上不要加负载;
 - ② 由于电机加减速有冲击,必须固定电机。
- 2、接线按图 7.6 接线
 - ① 主电路端子, 三相 AC 220V, 接 R、S、T 端子, 单相 AC 220V, 接 R、S 端子:
 - ② 控制电压端子 r、t 接单相 AC 220V;
 - ③ 编码器信号接插件 CN2 与伺服电机连接好;
 - ④ 控制信号接插件 CN1 按图示连接;
- 3. JOG 操作
- ①接通控制电路电源(主电路电源暂时不接),驱动器的显示器点亮,如果有报警出现,请检查连线。
 - ②接通主电路电源, POWER 指示灯点亮。

③按下表设置参数值

参数号	意义	参数值	出厂缺省值
PA4	控制方式选择	3	0
PA20	驱动禁止输入无效	1	0

④确认没有报警和任何异常情况后,使伺服使能(SON) ON, RUN 指示灯点亮,这时电机激励,处于零速状态。

⑤通过按键操作,进入JOG 运行操作状态,速度试运行提示符为"JO",数值单位是 r/min,系统处于速度控制方式,速度指令由按键提供,系统处于速度控制方式,速度指令由按键提供。按下↑键并保持,电机按 JOG 速度运行,松开按键,电机停转,保持零速;按下↓键并保持,电机按 JOG 速度反向 运行,松开按键,电机停转,保持零速。JOG 速度由参数 PA21 设置,缺省是 120r/min。

⑥如果外部控制伺服使能(SON)不方便,可以设置参数 PA53 为 0001,强制伺服使能(SON) ON 有效,不需要外部接线控制 SON。

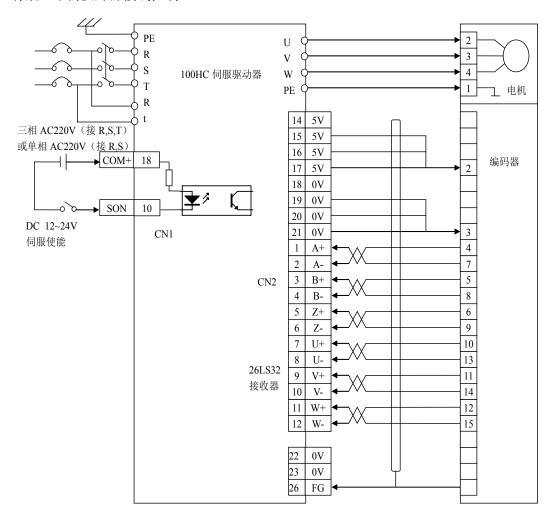


图7.6 试运行接线图

4. 手动调速操作

①接通控制电路电源(主电路电源暂时不接),驱动器的显示器点亮,如果有报警出现,请检查连线。

- ②接通主电路电源, POWER 指示灯点亮。
- ③按下表设置参数值

参数号	意义	参数值	出厂缺省值
PA4	控制方式选择	2	0
PA20	驱动禁止输入无效	1	0

④确认没有报警和任何异常情况后,使伺服使能(SON) ON, RUN 指示灯点亮,这时电机激励,处于零速状态。

⑤通过按键操作,进入速度试运行操作状态,速度试运行提示符为"S 0",数值单位是r/min,系统处于速度控制方式,速度指令由按键提供,用↑、↓键改变速度指令,电机应按给定的速度运转。

⑥如果外部控制伺服使能(SON)不方便,可以设置参数 PA53 为 0001,强制伺服使能(SON)ON 有效,不需要外部接线控制 SON。

7.5 位置控制模式的简单接线运行

- 1. 接线按图 7.7 接线,
 - ① 主电路端子,三相 AC 220V,接 R、S、T 端子,单相 AC 220V,接 R、S 端子;
 - ② 控制电压端子 r、t 接单相 AC 220V;
 - ③ 编码器信号接插件 CN2 与伺服电机连接好;
 - ④ 控制信号接插件 CN1 按图示连接;

2. 操作

- ① 接通控制电路电源和主电源,显示器有显示,POWER 指示灯点亮。
- ② 按下表设置参数值,将参数写入 EEPROM

参数号	意义	参数值	出厂缺省值
PA4	控制方式选择	0	0
PA12	电子齿轮分子	用户设置	1
PA13	电子齿轮分母	用户设置	1
PA19	位置指令平滑滤波器	0	0
PA20	驱动禁止输入无效	1	0

③ 没有报警和任何异常情况后,使伺服使能(SON) ON, RUN 指示灯点亮;

从控制器送低频脉冲信号到驱动器,使电机运行在低速。

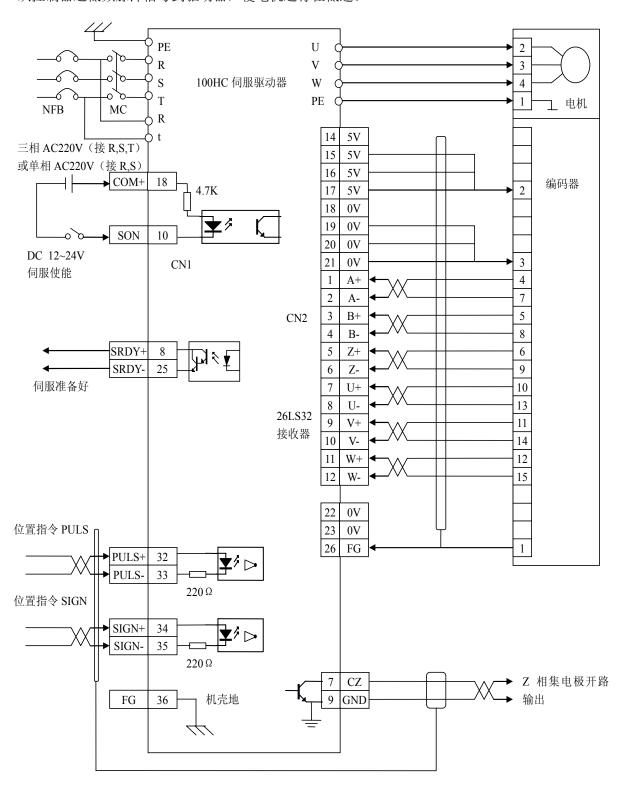


图7.7 位置控制模式简单接线图

3. 电子齿轮设置

本驱动器安装的编码器是 10000 脉冲/每转,通过设置电子齿轮参数 PA12、PA13 可得到任意

的脉冲当量。 注意: 你可以给分子和分母设定任意值而得到任何比值, 但最好不要超出 1/50~50 范围。

表7-1输入脉冲个数与旋转圈数的关系

输入脉冲数	电机旋转圈数	电子齿轮分子PA12	电子齿轮分母PA13
Pulses	$\frac{Pulses \times PA12}{10000 \times PA13}$	PA12	PA13
10000	1	1	1
5000	1	2	1
3000	1	10	3
800	1	25	2
20000	1	1	2
1000	2/3	20	3
4000	3	30	4

表7-2输入脉冲频率与旋转速度的关系

输入脉冲频率(Hz)	电机转速 (r/min)	电子齿轮分子PA12	电子齿轮分母PA13
Frequency	$\frac{Frequency \times 60 \times PA12}{10000 \times PA13}$	PA12	PA13
300k	1800	1	1
500k	3000	1	1
100k	1200	2	1
100k	1800	3	1
50k	1000	10	3
200k	800	2	3
100k	300	1	2

7.6 速度控制模式的简单接线运行

1. 接线按图 7.8 接线,

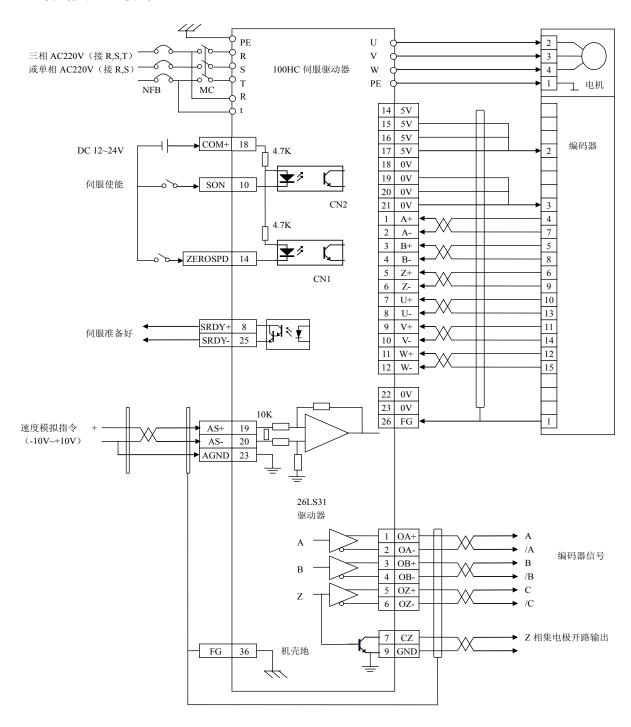


图7.8 速度控制模式简单接线图

- ① 主电路端子,三相 AC 220V,接 R、S、T 端子,单相 AC 220V,接 R、S 端子;
- ② 控制电压端子 r、t 接单相 AC 220V;
- ③ 编码器信号接插件 CN2 与伺服电机连接好;

- ④ 控制信号接插件 CN1 按图示连接;
- ⑤ 如果仅作调速控制,可不需连接编码器输出信号;如果外部控制器是位置控制器,需要连接编码器 输出信号。

2. 操作

- ① 接通控制电路电源和主电源,显示器有显示,POWER 指示灯点亮。
- ② 按下表设置参数值,将参数写入 EEPROM

参数号	意义	参数值	出厂缺省值
PA4	控制方式选择	1	0
PA20	驱动禁止输入无效	1	0
PA22	内外速度指令选择	1	1
PA40	加速时间常数	0	0
PA41	减速时间常数	0	0
PA43	模拟速度指令增益	按需要设置	300 (r/min) / V
PA44	模拟速度指令方向取反	0	0
PA45	模拟速度指令零偏补偿	0	0

- ③ 没有报警和任何异常情况后,使伺服使能(SON) ON, RUN 指示灯点亮;
- ④ 加一个可调直流电压到模拟速度输入端口,从 0 开始逐渐增加此电压,确保电机转速随指令作相应变化;加负电压,电机应反转。
 - ⑤ 闭合零速箝位开关 ZEROSPD, 电机应停止保持为零速;
 - ⑥ 如果模拟指令电压为 0 时, 电机还低速运转, 可调整参数 PA45, 使电机为零速;
 - ⑦ 调节参数 PA43、PA44 来改变输入增益和方向。

7.7 转矩控制方式的简单接线运行

1. 接线按图 7.9 接线:

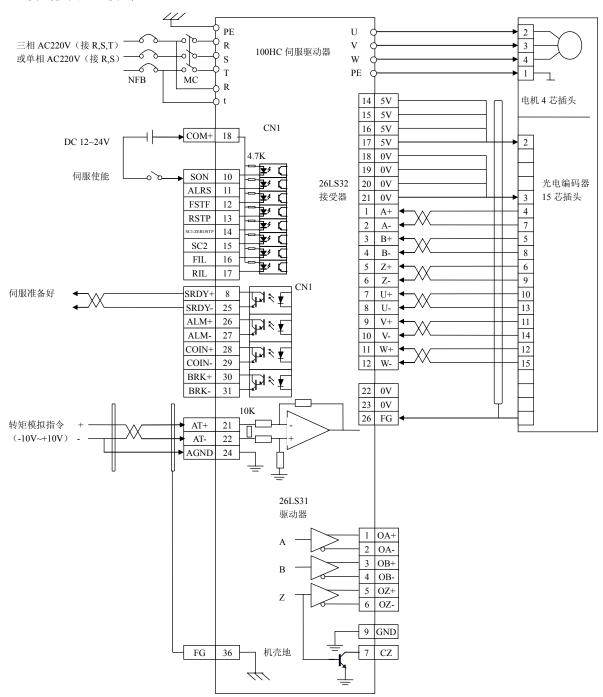


图 7.9 转矩控制方式的简单接线图

- ① 主电路端子,三相 AC 220V,接 R、S、T 端子,单相 AC 220V,接 R、S 端子;
- ② 控制电压端子 r、t 接单相 AC 220V;
- ③ 编码器信号接插件 CN2 与伺服电机连接好;
- ④ 控制信号接插件 CN1 按图示连接;

2. 操作

- ① 接通控制电路电源和主电源,显示器有显示,POWER 指示灯点亮。
- ② 按下表设置参数值,将参数写入 EEPROM

参数号	意义	参数值	出厂缺省值
PA4	控制方式选择	6	0
PA20	驱动禁止输入无效	1	0
PA29	模拟量转矩指令输入增益	按需要设置	30 (0.1V/100%)
PA33	模拟量转矩指令输入方向取反	0	0
PA39	模拟量转矩指令零偏补偿	0	0
PA50	转矩控制时速度限制	按需要设置	额定速度

- ③ 电机轴上加合适的负载;
- ④ 没有报警和任何异常情况后,使伺服使能(SON) ON, RUN 指示灯点亮;
- ⑤ 加一个可调直流电压到模拟转矩输入端口,从 0 开始逐渐增加此电压,电机输出相应矩;加负电压,电机输出反向转矩;
 - ⑥ 如果模拟指令电压为 0 时, 电机还有转矩输出, 可调整参数 PA39, 使其为零转矩;
 - ⑦ 调节参数 PA29、PA33 来改变输入增益和方向:
- ⑧ 请特别注意,负载太轻时,电机容易过速。参数 PA50 可对电机进行限速,防止轻载时电机超速;
 - ⑨ 超过额定转矩时系统处于过载状态,只能持续较短时间,其特性请参考系统的过载特性;

7.8 调整

7.8.1 基本增益调整

1、速度控制

- ——【速度比例增益】(参数PA5)的设定值,在不发生振荡的条件下,尽量设置的较大。一股情况下,负载惯量越大,【速度比例增益】的设定值应越大。
- ——【速度积分时间常数】(参数PA6)的设定值,根据给定的条件,尽量设置的较小。【速度积分时间常数】设定的太小时,响应速度将会提高,但是容易产生振荡。所以在不发生振荡的条件下,尽量设置的较小。【速度积分时间常数】设定的太大时,速度将波动较大。一般情况下,负载惯量越大,【速度积分时间常数】的设定值应越大。

2、位置控制

- —— 先按上面方法,设置合适的【速度比例增益】和【速度积分时间常数】。
- ——【位置前馈增益】(参数PA10)设置为0%。
- ——【位置比例增益】(参数PA9)的设定值,在稳定范围内,尽量设置的较大。【位置比例增益】设置的太大时,位置指令的跟踪特性好,滞后误差小,但是在停止定位时,容易产生振荡。 【位置比例增益】设定的较小时,系统处于稳定状态,但是位置跟踪特性变差,滞后误差偏大。
- ——如果要求位置跟踪特性特别高时,可以增加【位置前馈增益】设定值。但如果太大,会 引起超调。

【位置比例增益】的设定值可以参考下表

刚度	位置比例增益
低刚度	10-20 (1/S)
中刚度	30-50 (1/S)
高刚度	50-70 (1/S)

7.8.2 基本参数调整图

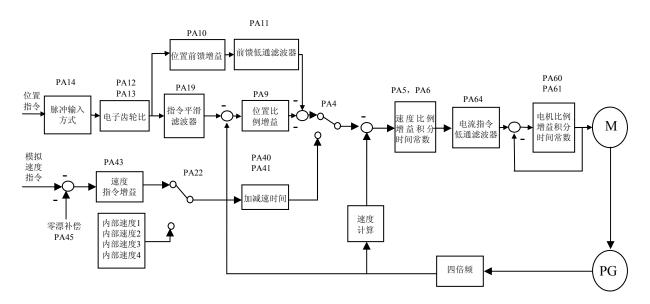


图7.10 基本参数调整图

7.9 相关知识

7.9.1 恢复缺省参数

在发生以下情况时,请使用恢复缺省参数(出厂参数)功能:

- ——参数被调乱,系统无法正常工作;
- ——保存参数时,系统恰好掉电,造成系统自动恢复缺省参数,但是型号代码(PA1)和本驱动器及电机不匹配;
- ——驱动器需要更换原配电机,新换电机与原配电机型号不同; 恢复缺省参数的步骤如下:
- ① 检查驱动器的型号(2A或 3A)以及适配电机的型号,根据表 4.3(适用于 2A驱动器)和表 4.4(适用于 3A驱动器)查出型号代码。特别注意驱动器的型号不要弄错,否则将会导致驱动器损坏。以2A驱动器适配 110ST-M06020 电机为例,查表 4.3 得到型号代码为 33;
 - ② 修改密码参数 PA0 为 385;
- ③ 修改型号代码参数 PA1 为选定的型号代码,本例子为 33,参数值显示为"2A-33",前导字符"2A"表 示采用 2A 驱动器。如果前导字符为"3A"则表示采用 3A 驱动器:
- ④ 将参数缺省值写入 EEPROM。在第 1 层中选择"EE-",按 Enter 键进入参数管理方式。首先需要 选择操作模式,共有 5 种模式,用 ↑ 、 ↓ 键来选择。选择"EE-dEF",然后按下 Enter 键并保持 3 秒 以上,显示器显示"Start",表示参数正在写入 EEPROM,大约等待 1~2

秒的时间后,如果写操 作成功,显示器显示 "FInISh",如果失败,则显示"Error"。

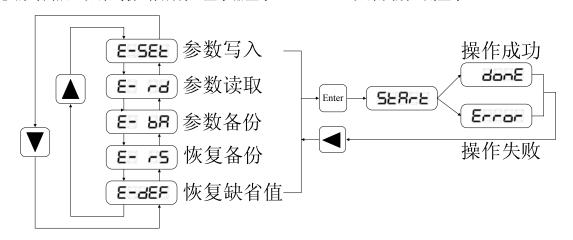


图 7.11 恢复缺省参数操作框图

⑤ 上一步操作成功后,关驱动器电源,然后重新上电,操作完成。

7.9.2 频繁出现 Err-15、Err-30、Err-31、Err-32报警

这些报警说明光电编码器及其连接电缆存在问题, 先从下面几个方面来解决:

- ① 连接电缆和插头是否有接触不良现象:
- ② 连接电缆的屏蔽线是否焊好(两端的插头都要焊好):
- ③ 驱动器的接地 PE 端子是否接地良好;
- ④ 电机的接地端子和驱动器的接地 PE 端子是否连接良好;
- ⑤ 如果连接连接电缆较长,可能造成电源在电缆上的压降过大,请改用多个芯线连接编码器的 5V和 0V 电源;
- ⑥ 连接电缆不要和强电电缆共一个线槽,试着改变连接电缆走线;如果以上措施不能奏效,请与销售商联系。

7.9.3 出现 Power灯不能点亮现象

在驱动器的控制电源和强电电源都正常条件下,驱动器数码管有显示,没有报警出现,而面板上的强电 指示 Power 灯不亮,驱动器不能运行。出现这种情况,大部分原因是驱动器内部制动电路出现故障,使驱动 器进入保护状态。请与销售商联系。

7.10 相关知识

7.10.1 位置分辨率和电子齿轮的设置

位置分辨率 (一个控制脉冲对应的行程 $^{\Delta l}$ mm) 决定于伺服电机每转行程 $^{\Delta S}$ (mm/转) 与编码器每转反馈脉冲数 P (脉冲/转)。

$$\Delta l = \frac{\Delta S}{P}$$

式中, Δl 一个脉冲行程 (mm);

AS 伺服电机每转行程(mm/转);

P 编码器每转反馈脉冲数(脉冲/转)。

由于系统中有四倍频电路,所以 $P=4\xi C$ C为编码器每转线数。本系统中, C=2500 线/转, 所以P=10000脉冲/转。

当考虑电子齿轮比时,指令脉冲要乘上电子齿轮比G后才转化为位置控制脉冲,所以一个指令脉冲行程△i*表示为

$$\Delta l^* = \frac{\Delta S}{P} \xi G$$

式中,
$$G = \frac{指令脉冲分频分子}{指令脉冲分频分母}$$

7.10.2 位置控制时的滞后脉冲

用脉冲串控制伺服电机时,指令脉冲与反馈脉冲之间有一个差值,即滞后脉冲,此值在位置偏差计数器中积累起来,它与指令脉冲频率、电子齿轮比和位置比例增益之间有以下关系:

$$\varepsilon = \frac{f \times G}{K_p}$$

 ε : 位置跟随误差 (脉冲)

f : 指令脉冲频率 (Hz)

 K_p
 : 位置比例增益

G: 电子齿轮比

注:以上关系是在【位置前馈增益】为0%条件下得到,如果【位置前馈增益】>0%,则滞后脉冲会比上式计算值小。

第八章 动态电子齿轮使用

动态电子齿轮功能是指在驱动系统运行中,通过输入控制信号,动态切换电子齿轮比例。该功能的作用是:上位机最大输出脉冲频率较低,当电子齿轮比例设置较小时,位置分辨率高,但最大速度较低;当电子齿轮比例设置较大时,位置分辨率低,但最高速度较高。为了在使用中,既获得较高的位置分辨率,又得到较高的最大速度,可设置两个电子齿轮比例,通过上位机输出的控制信号,动态进行切换。

例如,在数控机床应用中,设置第一电子齿轮比例较小,第二电子齿轮比例较大,在切削加工时,速度一般不是很高,上位机输出的控制信号选择第一电子齿轮比例,可得到较高的位置分辨率;在快速移动时,上位机输出的控制信号选择第二电子齿轮比例,可得到较高的移动速度。

8.1 简要接线

按图 8.1接线,如使用 STZ 系列电机,请改用 STZ 系列电机的电机接线和编码器接线;

- ① 主电路端子,三相 AC 220V,接 R、S、T 端子,单相 AC 220V,接 R、S 端子;
- ② 控制电压端子 r、t 接单相 AC 220V;
- ③ 编码器信号接插件 CN2 与伺服电机连接好;
- ④ 控制信号接插件 CN1 按图示连接;

8.2 操作

① 按下表8.1设置参数值,将参数写入EEPROM

表8.1 参数设置

参数号	意义	参数值	出厂缺省值
PA4	控制方式选择	0	0
PA20	驱动禁止输入无效	1	0
PA12	第一电子齿轮分子	用户设置	1
PA13	电子齿轮分母	用户设置	1
PA19	位置指令平滑滤波器	0	0
PA51	动态电子齿轮有效	1	0
PA52	第二电子齿轮分子	用户设置	1

- ② 通过控制输入端子 INH 实现电子齿轮切换。当 INH 端子 OFF 时,输入电子齿轮为 PA12/PA13; 当 INH 端子ON 时,输入电子齿轮为 PA52/PA13;
- ③ 注意 电子齿轮切换时,必须满足图 8.2 时序,在输入 INH 的变化点前后至少 10ms,不要发脉冲。

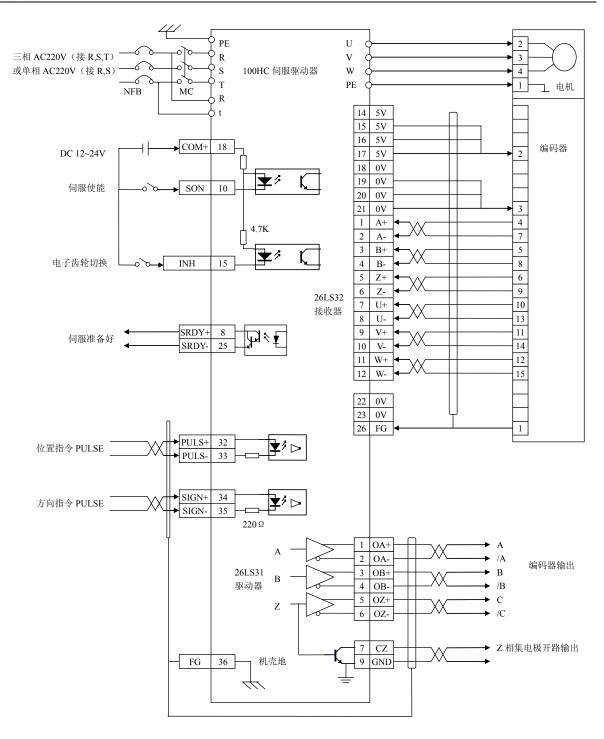


图 8.1 动态电子齿轮使用接线图

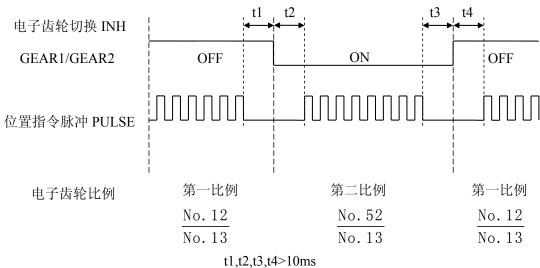


图8.2 动态电子齿轮切换时序

南京康尼电子科技有限公司地址:南京市模范中路39号

邮编:210013

生产基地:中国.南京市经济技术开发区恒达路19号

电话:025-85799726 85799728

传真: 025-85799729 Http://www.kn-e.com Email: sales@kn-e.com