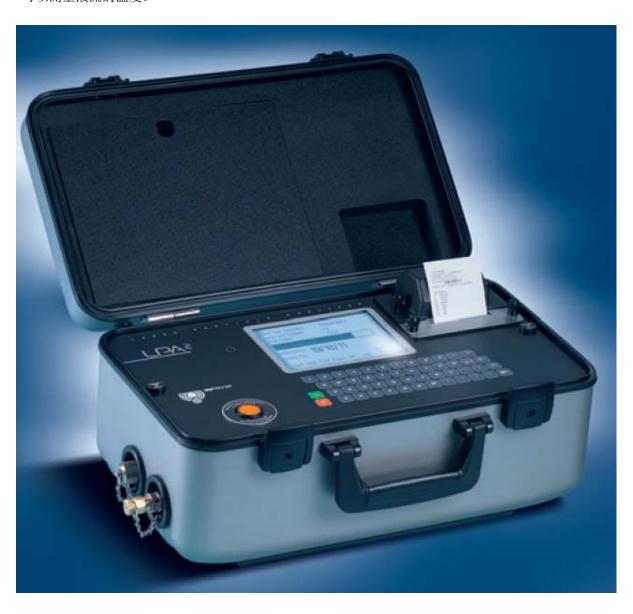
LPA2 污染度检测仪


配备双激光检测头。

独具特色的高精度、便携式设备。可用于液压、润滑和传输系统。

LPA2 是一种高精度、便携式激光污染检测仪,用于检测液流传动系统中的固态颗粒的数量和尺寸。工作压 力可达 400 巴,典型测量时间约 1 分钟。

对于矿物油, 在线检测时可以选用下述功能

- •水份传感器 用于测量水份饱和度(相对湿度)-以百分比为单位。
- •可以测量液流的温度。

特点

• LPA2 的重量很轻,一个箱子即可容纳。

LPA2 采取"操作简便"的设计原则,是一种高效、坚固、轻便、使用方便的仪器,特别适合在检测现场使用。

伸缩式支腿使得显示屏观察更为方便。

• 外置式警报插头。

配有一个插头适配器,因此可以连接外置式警报指示装置。

• 语言选择。

LPA2 可以选择四种工作语言 (英语、意大利语、法语和德语)。

● 监视器 + 键盘

LPA2 的一大特点是配有大尺寸的液晶显示器和全尺寸标准键盘,可以按照 ISO 4406、NAS 1638 和 SAE 4059的标准显示检测结果。

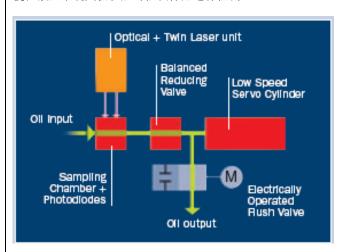
- 在线检测,工作压力达400巴。
- 可用于磷酸酯类液压油。

• 热敏打印机 + RS 232 接口。

LPA2 具有完善的打印输出功能,可以按照 ISO、NAS 和 SAE 标准打印检测结果。

检测结果也可以经由 RS 232 计算机接口储存到其它设备中。

• 电源(一次充电可以完成 100 多次检测)。


LPA2 配备有大容量可充电电池, 充电电压 12/24 伏。一次充电可以完成 100 次以上的检测操作。

• 可以储存 600 次检测数据。

• Minimess 测量接头。

LPA2 采用标准的 minimess 测量接头(M16 x 2)与液压系统相连。

LPA2 的另一大特点是配备内置式排流阀,确保在每次检测时都能采取代表性样品,从而避免检测中的交叉污染。LPA2 在连续工作模式下,可以在测试开始之前预先编好排流顺序,以便在液压系统关机以后对依次样品进行检测。

LPA2 – 的工作示意图。

特点

• 技术上, LPA2 使用了革命性的设计

采用了获得专利的液流处理技术,能够对工作压力高达400巴的液压系统进行检测。同时,还配有单作用稳定低压泵组,以保证每一次检测都有稳定的液流。

LPA2& PML2是以ISO 11171为基准,遵守ISOMTD标准的规定。

ACFTD (旧标准) 和 ISO MTD (新标准) 中针对粉尘尺寸的内容对照如下:

ACFTD	ISO MTD
(旧标准)	(新标准)
1	4
5	6
15	14
25	21
30	25
50 *	38
75 *	50
100 *	68

- 尚需 NIST 确认。
- · LPA2 的各种检测模式。

在线检测(工作压力可达 400 巴)

1 - 快速检测

1分半钟就能得到检测结果,整个检测时间为两分半钟

2 - 标准检测

两分半钟能得到检测结果,整个检测时间为四分半钟

3 - 动态检测

取三次检测结果的平均值,整个检测时间为九分半钟

4 - 连续检测

由用户定义测试次数和目标清洁度,可以根据要求设定清洁度级别,最短的连续测试需时五分钟。

5 - 为外部警报信号系统配备了电气接头。

• 取样瓶

取三次检测结果的平均值,检测时间为四分半钟

• 检测结果可以书面形式输出。

1 在线状态下的标准单次检测结果。 ISO 4406编码。

2 在线状态下的动态检测

取三次检测结果的平均值。 NAS 1638 编码。

3在线状态下的动态检测

取三次检测结果的平均值。 ISO 4406 编码。

特点

• 遥控操作。

遥控操作需配备 RS 485 操作接口,详细情况请与 MP Filtri 联系。

• 认证。

LPA2 获得 CE 认证,并且获得了 EMS 认证证书。

• 环境危害最小……

LPA2 的包装箱经特别设计,与外界密封,防止灰尘和水气 侵入,从而保证现场操作的安全性。

• 装具包。

LPA2 配备一个坚固轻质的装具包,可以用它方便地将设备 及附件运送到工作现场。

• 样品装瓶组件包括:

- •包装盒
- •取样瓶
- 电源
- •真空杯
- •400毫米长的采样软管
- •1500毫米长的压力软管
- •取样瓶 x 3
- •一次性试管 x 50
- •手动泵和 10 米长的软管
- •废料瓶和 2 米长的软管 •打印纸 2 卷
- •检测口接头

• 水份传感器

第二代可以选用水份传感器,可以测量出油液中的含水 量(相对湿度)以及油液的温度,在显示器和打印纸上, 均以RH %和°C为单位。

测量出的温度值作为相对湿度的参考温度。

在相对湿度/温度工作模式下,由于检测口处的液压油与 检测设备之存在温度梯度,因此根据操作环境的不同,温 度的读数要比实际温度低 5°C 至 10°C。

可以选用 110 毫升和 250 毫升取样瓶

矿物油和磷酸酯液压油的两种专用取样瓶。

110毫升标准取样瓶配有脱气装置,仅用于矿物油。

250 毫升实验室取样瓶配有脱气装置,同时适用于矿物油和磷酸酯液压油。

110毫升取样瓶

通过简单地拨动开 关,用户即可以选择 对样品进行真空脱 气,或者对样品进行 分析。

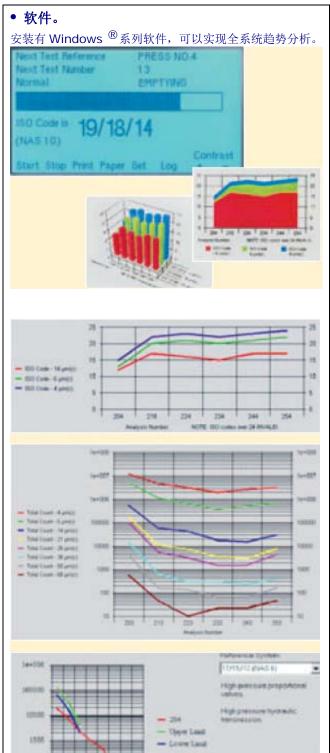
液压油含气量高,在检测时会降低测量精度,因此采样组件包含有脱气装置,在采样之前,先对取样室内的液压油进行脱气处理。

在样品装瓶时,任何悬浮在液压油里的气体,都被计算为颗粒。由于空气被当成污染物,因此会影响液压油清洁度 检测结果的精度。

下图是脱气样品和未脱气样品的对比照片。

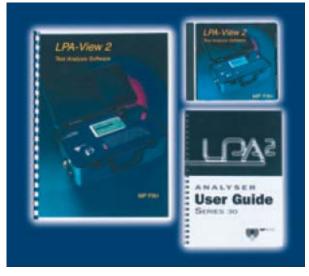
要注意,取样瓶只有在按照ISO 3722标准进行清洁以后方可使用。现代液压系统均配有高效的滤清器,液压油的清洁度能够达到取样瓶的清洁度。

如果使用未清洁的取样瓶,则会极大地增加颗粒数量。 (需要注意的是,消毒处理能够杀灭细菌,但是不能减少颗粒的数量),至少也会使清洁度发生很大变化。 如果污染物突然增多,可能是由于取样瓶引起的,这种 突然增多肯定会引起不必要的矫正措施。

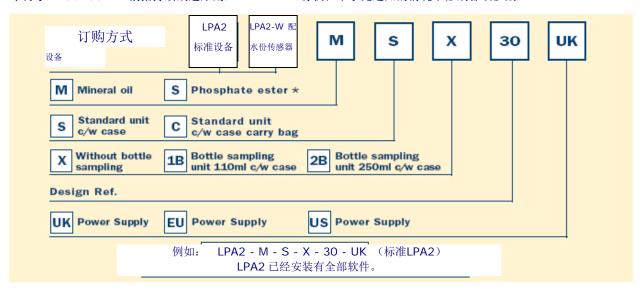

以上资料引自 BFPA 第 5 页第 7.6.2 节:取样瓶。

MP Filtri(英国)公司供应实验室标准取样瓶,产品编号为P. O2.

取样瓶按照DIN/ISO 5884的标准进行过清理。


清洁度级别符合ISO 3722标准,获得NAS 1638清洁度00级至0级证书。

W 水份传感器不适用于样品装瓶



- 配备有光驱和接口,可以将LPA和PML的检测数据转存到计算机里。
- 检测数据可以与Windows系列的软件交互使用。
- 工作时间长, 能够实现趋势分析。
- 快速简便的滤波器-能够立即显示所选择的数据。
- 能够生成易于解读的污染物分析报告。
- 根据所选的清洁度编码制作比较图形,作为检测数据的参考资料。
- 可以按用户要求采用其它操纵模式。

用途	自动光学污染检测仪	
激光元件	双激光检测头、双光学二极管。	
液晶显示器	(背后照明)	
灵敏度	大于 4、6、14、21、25、38、50、68 微米,符合 ISO 4406 标准(修订版)的微米级标准	
精度/可重复性	优于典型值的 3%	
校准	以 ISO 11171: 1999 为基准,按 ISO 中试验粉尘 (MTD) 校准。	
分析范围	ISO 8 至 ISO 24、ISO 4406 编码。(NAS 1638 编码- 2 至 12)(SAE AS 4059- 编码 2 至 12)	
报告/打印格式	根据不同检测要求,可以选用 ISO 和 NAS 编码。	
打印机	固定热敏头打印机,每行 384 点。	
LPA2 取样量	8毫升(快速)、15毫升(标准)、30毫升(动态)、24毫升(样品装瓶)、15毫升(连续)	
运行	最大系统工作压力 - 400 巴,最小工作压力 - 2 巴。	
粘度范围	达 400 厘沲	
操作温度	+ 5至+ 80°C	
液压油的类型	矿物油、石油基液压油、首诺液压油,(其它液压油,请咨询 MP FILTRI)	
典型检测时间	2 分钟。	
电源	内置可充电电池(电源充电器),或者外部 12/24 伏直流电源。	
数据储存容量	600 次检测数据	
计算机接口	RS 232 通信接口	
软管连接方式	配有 minimess 接口的 1.5 米长小孔压力软管(可选用 5 米和 10 米软管)。	
	快速连接废液排放软管。	
尺寸	210 毫米高、260 毫米长、430 毫米宽,重量 7.6 公斤	
可以选用的专用设备	- W- 水份传感器,单位 RH% - 相对湿度,精度±3%,液压油温度单位为°C – 精度±3°C	
可以选用的设备	配有minimess接口的内置式粗滤网。	
	500 微米不锈钢可清洗过滤网,工作压力 400 巴。	

专利号: 2354067 - 根据持续改进原则, MP FILTRI 有权在不事先通知的情况下修改各项参数。

M: 矿物油 **S:** 磷酸酯*

X:不配备取样瓶 **1B:** 110 毫升取样瓶组件, c/w 盒 **2B:** 250 毫升取样瓶组件, c/w 盒

LPA2 分析仪	选用装置	
	110 毫升取样瓶/脱气组件	BS - LPA - M - 110 - *
包括附件包 - 软	TO TO I A MAIN MAIN AND AND AND AND AND AND AND AND AND AN	BS - LPA - M - 250 - *
管、废液瓶、打印		BS - LPA - S - 250 - *
纸和色带, M 16x2	USB 无源串口转换器	
BSP 适配器。	软件	SK0026
	装具包	LPA - W - 30
	内置式粗滤网	CB0001
	* 英国、欧盟或美国标准电源.	SK.0040

^{*}目前没有配备水份传感器、适用于磷酸酯液压油的设备。相关事务请与 MP FILTRI 联系。

LPA2-W

能够精确稳定地测量水份的饱和度,用RH(相对湿度)的百分

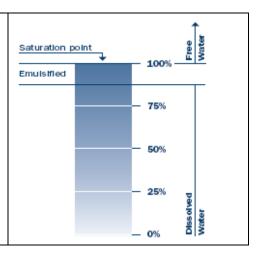
比表示。

不同的液压油有不同的饱和度,百分比是最为实用的测量方法。在液压油的饱和度/温度已知的情况下,测量结果也可以用 PPM(百万分之一)表示。

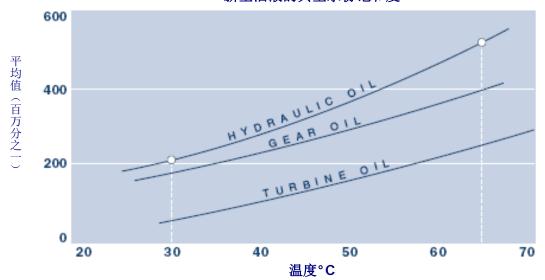
测量液压系统和润滑系统中的水份

(信息来源: 北诺斯动力中心)

含水量


在矿物油和非水性防火液体中,水是有害成份。通常情况下矿物油的含水量为 50-300,不会产生不良影响。

一旦油液里的含水量大于 500ppm,则会产生有害影响。含水量高于这个值,游离的水份有可能聚集在油液的下层,从而有发生腐蚀和加速磨损的危险。


同理, 防火液体虽然与矿物油不同, 但天然水产生的不良影响是相同的。

饱和度

由于游离的或者乳化的水份比溶解状态的水份 危害更大,因此含水量应当保持在饱和点以下。 但是,溶解状态的水也会产生不良影响,所以有 必要采取各种措施将饱和度保持在最低点。 含水量虽然微小,但是负作用很大。我公司推荐, 在所有设备中尽可能将含水量保持在饱和度的 50%以下。

新型油液的典型水份饱和度

例如:液压油的温度为 30° C = 200ppm = 饱和度 100%液压油的温度为 65° C = 500ppm = 饱和度 100%

hydraulicparticlecounter.com

辅助设备 — 对系统进行精确监视,降低因人力和材料的缺点而导致的成本。

质量控制 - 保证产品达到公认的清洁度标准。

环境监视 – 对高成本工艺或者贵重设备进行精确监视,确保系统的可靠性。

维修 - 用于预防性维修,监视和检查设备的运行情况。

军事用途 - 在危险环境中实行精确监视、确保行动的隐密

产品开发 – 给已经为液压系统用户生产出来的产品确定清洁度等级。

• 典型用途

- 钢厂
- 造纸厂
- 注塑模型
- 汽车
- 风力
- 试验平台
- 润滑油
- 完全清洁
- 动力装置

汉莎技术 AG 液压中心位于汉堡,将 LPA2 用于其首诺液压油试验平台的液压液流分析

• 每一台 Extec 机械在完工前都要经过彻底清洗。LPA2 用于确保液压系统达到标准要求。

• DARA(国防航空修理局 Defence Aviation Repair Agency)已经在威尔士圣安森建立起一个飞机保养厂。使用内置式污染检测仪(PML2)监控液压系统内的污染物。借助于"Modbus"协议,可以通过可编程逻辑控制器(PLC)对 PML2 进行程序控制,以便对各类飞机液压系统的清洁度进行检测和记录。