SERVICE \& OPERATING MANUAL
SANDPIPER
A WARREN RUPP PUMP BRAND
Model S1F Non-Metallic Design Level 3

Table of Contents

Engineering Data and Temperature Limitations. 1
Explanation of Pump Nomenclature 2
Performance Curve, Model S1F Non-Metallic Design Level 3 3
Dimensions: S1F Non-Metallic 4
Metric Dimensions: S1F Non-Metallic 5
Dimensions: S1F Spill Containment
Metric Dimensions: S1F Spill Containment 7
Principle of Pump Operation .8
Installation and Start-up 8
Air Supply 8
Air Valve Lubrication 8
Air Line Moisture. 8
Air Inlet and Priming 8
Between Uses 8
Installation Guide9
Important Safety Information 10
Material Codes 11
Troubleshooting 12
Warranty 12
Composite Repair Parts Drawing 14
Overlay Option Drawing 14
Composite Repair Parts List 15
Spill Containment Option for Virgin PTFE Equipped Pumps 16
Spill Containment Repair Parts List 16
Spill Containment Concept 17
Spill Containment Option Diaphragm Servicing 17
Filling Spill Containment Chambers with Liquid 17
Spill Containment Option for TPE Equipped Pumps 18
Spill Containment Repair Parts List 18
Spill Containment Concept with TPE Diaphragms 19
Spill Containment Option with TPE Diaphragm 19
Air Distribution Valve Assembly Drawing 20
Main Air Valve Assembly Parts List 20
Air Distribution Valve Servicing 21
Air Distribution Valve with Stroke Indicator Options 22
Air Distribution Valve with Stroke Indicator Parts List 22
Air Distribution Valve with Stroke Indicator Servicing 23
Solenoid Shifted Air Valve Drawing 24
Solenoid Shifted Air Valve List. 24
Solenoid Shifted Air Distribution Valve Option 25
Diaphragm Service Drawing, Non-Overlay 26
Diaphragm Service Drawing, with Overlay 26
Diaphragm Servicing 27
Overlay Diaphragm Service 27
Pilot Valve Servicing, Assembly Drawing \& Parts List 28
Pumping Hazardous Liquids 29
Converting the pump for piping the exhaust air 29
Exhaust Conversion Drawing 29
Converted Exhaust Illustration. 29
Modular Check Valve Servicing 30
Modular Check Valve Drawing. 30
Dual Port Option Drawing 31
Dual Porting Options 32
Dual porting of both suction and discharge ends of the pump 32
Single porting of the suction and dual porting of the pump discharge 32
Dual porting of the suction and single porting of the pump discharge 32
Leak Detection Options Drawing 33
Electronic Leak Detector Installation 33
Mechanical Leak Detector Installation 33
Pulse Output Kit Drawing34
Pulse Output Kit Option 34
Optional Muffler Configurations, Drawing 35
Grounding The Pump 36
CE Declaration of Conformity 37

[^0]
MARREN RUPP

Quality System ISO9001 Certified

Environmental Management System

 ISO14001 Certified

U.S. Patent \#5,996,627; 400,210; 6,241,487 Other U.S. Patents Applied for

SANDPIPER
 A WARREN RUPP PUMP BRAND

S1F Non-Metallic Design Level 3 Ball Valve

Air-Operated Double Diaphragm Pump

ENGINEERING, PERFORMANCE \& CONSTRUCTION DATA

INTAKE/DISCHARGE PIPE SIZE 1" ANSI Flange or PN10 25 mm DIN Flange	CAPACITY 0 to 45 gallons per minute (0 to 170 liters per minute)	AIR VALVE No-lube, no-stall design	SOLIDS-HANDLING Up to 25 in. (6 mm)	HEADS UP TO 100 psi or 231 ft of water (7 bar or 70 meters)	DISPLACEMENT/STROKE .17 gallon / . 64 liter
! CAUTION! Operating temperature limitations are as follows:					
Materials				Maximum ${ }^{\text {* }}$	Minimum*
Santoprene ${ }^{\oplus}$: Injection molded thermoplastic elastomer with no fabric layer. Long mechanical flex life. Excellent abrasion resistance.				$\begin{aligned} & 275^{\circ} \mathrm{F} \\ & 135^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{F} \\ & -40^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Virgin PTFE: Chemically inert, virtually impervious. Very few chemicals are known to react chemically with PTFE: molten alkali metals, turbulent liquid or gaseous fluorine and a few fluoro-chemicals such as chlorine trifluoride or oxygen difluoride which readily liberate free fluorine at elevated temperatures.				$\begin{aligned} & 220^{\circ} \mathrm{F} \\ & 104^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -35^{\circ} \mathrm{F} \\ & -37^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
PVDF				$\begin{array}{r} 250^{\circ} \mathrm{F} \\ 121^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{gathered} 0^{\circ} \mathrm{F} \\ -18^{\circ} \mathrm{C} \\ \hline \end{gathered}$
Polypropylene				$\begin{aligned} & 180^{\circ} \mathrm{F} \\ & 82^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 32^{\circ} \mathrm{F} \\ & 0^{\circ} \mathrm{C} \end{aligned}$
Nitrile: General purpose, oil-resistant. Shows good solvent, oil, water and hydraulic fluid resistance. Should not be used with highly polar solvents like acetone and MEK, ozone, chlorinated hydrocarbons and nitro hydrocarbons.				$\begin{aligned} & 190^{\circ} \mathrm{F} \\ & 88^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -10^{\circ} \mathrm{F} \\ & -23^{\circ} \mathrm{C} \end{aligned}$
Neoprene: All purpose. Resistant to vegetable oil. Generally not affected by moderate chemicals, fats, greases and many oils and solvents. Generally attacked by strong oxidizing acids, ketones, esters, nitro hydrocarbons and chlorinated aromatic hydrocarbons.				$\begin{gathered} 200^{\circ} \mathrm{F} \\ 93^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -10^{\circ} \mathrm{F} \\ & -23^{\circ} \mathrm{C} \end{aligned}$
FKM (Fluorocarbon): Shows good resistance to a wide range of oils and solvents; especially all aliphatic, aromatic and halogenated hydrocarbons, acids, animal and vegetable oils. Hot water or hot aqueous solutions (over $70^{\circ} \mathrm{F}$) will attack FKM.				$\begin{aligned} & 350^{\circ} \mathrm{F} \\ & 177^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{F} \\ & -40^{\circ} \mathrm{C} \end{aligned}$

For specific applications, always consult the Warren Rupp "Chemical Resistance Chart"
SANDPIPER ${ }^{\oplus}$ pumps are designed to be powered only by compressed air.

Explanation of Pump Nomenclature

S1F Non-Metallic • Design Level 3 - Ball Valve

Model	Pump Brand	Pump Size	Check Valve Type	Design Level	Wetted Material	Diaphragm/ Check Valve Materials	Check Valve Seat	Non-Wetted Material Options	Porting Options	Pump Style	Pump Options	Kit Options	Shipping Weight lbs. (kg)
S1FB3P1PPUS000.	S	1F	B	3	P	1	P	P	U	S	0	00.	$42(19)$
S1FB3P2PPUS000.	S	1F	B	3	P	2	P	P	U	S	0	00.	$42(19)$
S1FB3PBPPUS000.	S	1F	B	3	P	B	P	P	U	S	0	00.	$42(19)$
S1FB3PGPPUS000.	S	1F	B	3	P	G	P	P	U	S	0	00.	$42(19)$
S1FB3PNPPUS000.	S	1F	B	3	P	N	P	P	U	S	0	00.	$42(19)$
S1FB3K1KPUS000.	S	1F	B	3	K	1	K	P	U	S	0	00.	$54(24)$
S1FB3K2KPUS000.	S	1F	B	3	K	2	K	P	U	S	0	00.	$54(24)$
S1FB3P3PPUV000.	S	1F	B	3	P	3	P	P	U	V	0	00.	$48(22)$
S1FB3K3KPUV000.	S	1F	B	3	K	3	K	P	U	V	0	00.	$64(29)$
S1FB3P4PPUV000.	S	1F	B	3	P	3	P	0					
S1FB3K4KPUV000.	S	1F	B	3	K	4	P	P	U	V	0	00.	$48(22)$

Pump Brand

S= SANDPIPER ${ }^{\circledR}$
Pump Size
1F= 1" Full Flow
Check Valve Type
$B=B a l l$
Design Level
$3=$ Design Level 3
Wetted Material
$\mathrm{K}=\mathrm{PVDF}$
$\mathrm{P}=$ Polypropylene
A C= Conductive Polypropylene
A V = Conductive PVDF
Diaphragm Check Valve Materials
$1=$ Santoprene/Santoprene
2= PTFE Santoprene Backup/PTFE
3= PTFE Pumping, PTFE-Santoprene Backup Driver/PTFE
4= Santoprene Pumping/Santoprene
B= Nitrile/Nitrile
G= PTFE-Neoprene Backup/PTFE
$\mathrm{N}=$ Neoprene/Neoprene
$V=F K M / F K M$

Diaphragm Check Valve Materials, Continued
$\mathrm{Y}=$ PTFE Pumping/One-Piece Bonded
Driver/PTFE
Z= One-Piece Bonded/PTFE

Check Valve Seat

$\mathrm{K}=\mathrm{PVDF}$
$\mathrm{P}=$ Polypropylene

Non-Wetted Material Options

$\mathrm{P}=$ Polypropylene
$1=40 \%$ Glass Filled Polypropylene with PTFE hardware
AC
$\mathrm{C}=$ Conductive Polypropylene
Porting Options
$\mathrm{U}=$ Universal (Fits ANSI and DIN)
$7=$ Dual Porting (ANSI)
$8=$ Top Dual Porting (ANSI)
$9=$ Bottom Dual Porting (ANSI)

Pump Style

D= With Electronic Leak Detection (110 V)
$\mathrm{E}=$ With Electronic Leak Detection (220V)
$\mathrm{M}=$ With Mechanical Leak Detection
$S=$ Standard
$\mathrm{V}=$ With Visual Leak Detection

ump Options

A $0=$ None
1= Sound Dampening Muffler
2= Mesh Muffler
3= High temperature Air Valve w/Integral Muffler
4= High temperature Air Valve w/Sound Dampening Muffler
5= High temperature Air
Valve w/Mesh Muffler
A $6=$ Metal Muffler
A 7= Metal Muffler with Grounding Cable

Kit Options

A $00 .=$ None
P0. $=10-30 \mathrm{VDC}$ Pulse Output Kit
A P1. = Intrinsically-Safe
5-30VDC, 110/120VAC,
220/240VAC Pulse Output Kit

Kit Options, Continued
P2. $=110 / 120$ or 220/240VAC Pulse Output Kit
EO. = Solenoid Kit with 24VDC Coil
A E1. = Solenoid Kit with 24VDC ExplosionProof Coil
E2. = Solenoid Kit with 24VAC/12VDC Coil
.=Solenoid Kit with 12VDC Explosion-Proof Coil
E4.= Solenoid Kit with 110VAC CoilE5. = Solenoid Kit with 110VAC, 60 Hz Explosion-Proof Coil
E6. = Solenoid Kit with 220VAC Coil
A E7.= Solenoid Kit with 220VAC, 60 Hz Explosion-Proof Coil
A E8.= Solenoid Kit with $110 \mathrm{VAC}, 50 \mathrm{~Hz}$ Explosion-Proof Coil
A E9.= Solenoid Kit with 230VAC, 50 Hz Explosion-Proof Coil
SP. = Stroke Indicator Pins

Performance Curve, Model S1F Non-Metallic Design Level 3

Dimensions: S1F Non-Metallic

Dimensions in Inches
Dimensional tolerance: $\pm 1 / 8^{\prime \prime}$

DIMENSION	A	B
Standard Pump	$67 / 8^{\prime \prime}$	$113 / 4^{\prime \prime}$
Pulse Output Kit	$67 / 8^{\prime \prime}$	$113 / 4^{\prime \prime}$
Mesh Muffler	$89 / 16^{\prime \prime}$	$115 / 32^{\prime \prime}$
Sound Dampening Muffler	$89 / 16^{\prime \prime}$	$115 / 32^{\prime \prime}$
Metal Muffler	$9{ }^{\prime \prime}$	$14^{\prime \prime}$

Metric Dimensions: S1F Non-Metallic

Dimensions in Millimeters
Dimensional tolerance: $\pm 3 \mathrm{~mm}$

DIMENSION	A	B
Standard Pump	175 mm	298 mm
Pulse Output Kit	175 mm	298 mm
Mesh Muffler	167 mm	283 mm
Sound Dampening Muffler	167 mm	283 mm
Metal Muffler	229 mm	356 mm

Dimensions: S1F Non-Metallic with Spill Containment Dimensions in Inches

BOTTOM VIEW

Metric Dimensions: S1F Non-Metallic with Spill Containment

Dimensions in Millimeters

Dimensional tolerance: $\pm 3 \mathrm{~mm}$

BOTTOM VIEW

PRINCIPLE OF PUMP OPERATION
This ball type check valve pump is powered by compressed air and is a $1: 1$ ratio design. The inner side of one diaphragm chamber is alternately pressurized while simultaneously exhausting the other inner chamber. This causes the diaphragms, which are connected by a common rod secured by plates to the centers of the diaphragms, to move in a reciprocating action. (As one diaphragm performs the discharge stroke the other diaphragm is pulled to perform the suction stroke in the opposite chamber.) Air pressure is applied over the entire inner surface of the diaphragm while liquid is discharged from the opposite side of the diaphragm. The diaphragm operates in a balanced condition during the discharge stroke which allows the pump to be operated at discharge heads over 200 feet (61 meters) of water.

For maximum diaphragm life, keep the pump as close to the liquid being pumped as possible. Positive suction head in excess of 10 feet of liquid (3.048 meters) may require a back pressure regulating device to maximize diaphragm life.

Alternate pressurizing and exhausting of the diaphragm chamber is performed by an externally mounted, pilot operated, four way spool type air distribution valve. When the spool shifts to one end of the valve body, inlet pressure is applied to one diaphragm chamber and the other diaphragm chamber exhausts. When the spool shifts to the opposite end of the valve body, the pressure to the chambers
is reversed. The air distribution valve spool is moved by a internal pilot valve which alternately pressurizes one end of the air distribution valve spool while exhausting the other end. The pilot valve is shifted at each end of the diaphragm stroke when a actuator plunger is contacted by the diaphragm plate. This actuator plunger then pushes the end of the pilot valve spool into position to activate the air distribution valve.

The chambers are connected with manifolds with a suction and discharge check valve for each chamber, maintaining flow in one direction through the pump.

INSTALLATION AND START-UP

Locate the pump as close to the product being pumped as possible. Keep the suction line length and number of fittings to a minimum. Do not reduce the suction line diameter.

For installations of rigid piping, short sections of flexible hose should be installed between the pump and the piping. The flexible hose reduces vibration and strain to the pumping system. A surge suppressor is recommended to further reduce pulsation in flow.

AIR SUPPLY

Air supply pressure cannot exceed 100 psi (7 bar). Connect the pump air inlet to an air supply of sufficient capacity and pressure required for desired performance. When the air supply line is solid piping, use a short length of flexible hose not less than $1 / 2^{\prime \prime}(13 \mathrm{~mm})$ in diameter between the pump and the piping to reduce strain
to the piping. The weight of the air supply line, regulators and filters must be supported by some means other than the air inlet cap. Failure to provide support for the piping may result in damage to the pump. A pressure regulating valve should be installed to insure air supply pressure does not exceed recommended limits.

AIR VALVE LUBRICATION

The air distribution valve and the pilot valve are designed to operateWITHOUT lubrication. This is the preferred mode of operation. There may be instances of personal preference or poor quality air supplies when lubrication of the compressed air supply is required. The pump air system will operate with properly lubricated compressed air supply. Proper lubrication requires the use of an air line lubricator (available from Warren Rupp) set to deliver one drop of SAE 10 non-detergent oil for every 20 SCFM (9.4 liters/sec.) of air the pump consumes at the point of operation. Consult the pump's published Performance Curve to determine this.

AIR LINE MOISTURE

Water in the compressed air supply can create problems such as icing or freezing of the exhaust air, causing the pump to cycle erratically or stop operating. Water in the air supply can be reduced by using a point-of-use air dryer to supplement the user's air drying equipment. This device removes water from the compressed air supply and alleviates the icing or freezing problems.

AIR INLET AND PRIMING

To start the pump, open the air valve approximately $1 / 2^{\prime \prime}$ to $3 / 4^{\prime \prime}$ turn. After the pump primes, the air valve can be opened to increase air flow as desired. If opening the valve increases cycling rate, but does not increase the rate of flow, cavitation has occurred. The valve should be closed slightly to obtain the most efficient air flow to pump flow ratio.

BETWEEN USES

When the pump is used for materials that tend to settle out or solidify when not in motion, the pump should be flushed after each use to prevent damage. (Product remaining in the pump between uses could dry out or settle out. This could cause problems with the diaphragms and check valves at restart.) In freezing temperatures the pump must be completely drained between uses in all cases.

MARREN RUPP

INSTALLATION GUIDE

Top Discharge Ball Valve Unit
Available from
Warren Rupp
(1) Surge Suppressor
(2) 020-050-000 Filter/Regulator
(3) Air Dryer

A CAUTION
The air exhaust should be
piped to an area for safe disposition of the product being pumped, in the event of a diaphragm failure.

RECYCLING

Many components of SANDPIPER ${ }^{\circledR}$ Metallic AODD pumps are made of recyclable materials (see chart on page 11 for material specifications). We encourage pump users to recycle worn out parts and pumps whenever possible, after any hazardous pumped fluids are thoroughly flushed.

Pump complies with EN809 Pumping Directive, Directive 98/37/EC Safety of Machinery, and Directive 94/9/EC, EN13463-1 Equipment for use in Potentially Explosive Environments. For reference to the directive certificates visit: www.warrenrupp.com. The Technical File No. AX1 is stored at KEMA, Notified Body 0344, under Document \#203040000

IMPORTANT SAFETY INFORMATION

IMPORTANT

Read these safety warnings Read these safety warnings manual completely, before antallation and start-up f the pump. It is the purchaser to retain this esponsibility of the manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

4 CAUTION

Before pump operation nspect all gasketed fasteners for looseness caused by gasket creep. Reorque loose fasteners to prevent leakage. Follow recommended torques stated in this manual.

! WARNING

Beforemaintenance orrepair, shut off the compressed air line, bleed the pressure, and disconnect the air line from the pump. The discharge ine may be pressurized and must be bled of its pressure.

$!$ WARNING

In the event of diaphragm upture, pumped material may enter the air end of the pump, and be discharged into the atmosphere. If pumping a product which is hazardous or toxic, the air exhaust must be piped to an appropriate area for safe disposition

© WARNING

Take action to prevent static sparking. Fire or explosion can result, especially when handling flammable liquids. The pump, piping, valves, containers or other miscellaneous equipment must be grounded. (See page 36)

4 WARNING

This pump is pressurized internally with air pressure during operation. Always make certain that all bolting is in good condition and that all of the correct bolting is reinstalled during assembly.

4 WARNING

When used for toxic or agressive fluids, the pump should always be flushed clean prior to disassembly.

A WARNING

Before doing any maintenance on the pump, be certain all pressure is be certain all pressure is
completely vented from the pump, suction, discharge, piping, and all other openings and connections. Be certain the air supply is locked out or made non-operational, so that it cannot be started while work is being done on the pump. Be certain that approved eye protection and protective clothing are worn all times in the vicinity of the pump. Failure to follow these recommendations may result in serious injury or death.

Material Codes

The Last 3 Digits of Part Number

000	Assembly, sub-assembly;	180	Copper Alloy	378	High Density Polypropylene
	and some purchased items	305	Carbon Steel, Black Epoxy Coated	379	Conductive Nitrile
010	Cast Iron	306	Carbon Steel, Black PTFE Coated	405	Cellulose Fibre
012	Powered Metal	307	Aluminum, Black Epoxy Coated	408	Cork and Neoprene
015	Ductile Iron	308	Stainless Steel, Black PTFE Coated	425	Compressed Fibre
020	Ferritic Malleable Iron	309	Aluminum, Black PTFE Coated	426	Blue Gard
025	Music Wire	310	PVDF Coated	440	Vegetable Fibre
080	Carbon Steel, AISI B-1112	330	Zinc Plated Steel	465	Fibre
100	Alloy 20	331	Chrome Plated Steel	500	Delrin 500
110	Alloy Type 316 Stainless Steel	332	Aluminum, Electroless Nickel Plated	501	Delrin 570
111	Alloy Type 316 Stainless Steel	333	Carbon Steel, Electroless	502	Conductive Acetal, ESD-800
	(Electro Polished)		Nickel Plated	503	Conductive Acetal, Glass-Filled
112	Alloy C	335	Galvanized Steel	505	Acrylic Resin Plastic
113	Alloy Type 316 Stainless Steel	336	Zinc Plated Yellow Brass	506	Delrin 150
	(Hand Polished)	337	Silver Plated Steel	520	Injection Molded PVDF Natural color
114	303 Stainless Steel	340	Nickel Plated	521	Conductive PVDF
115	302/304 Stainless Steel	342	Filled Nylon	540	Nylon
117	440-C Stainless Steel (Martensitic)	353	Geolast; Color: Black	541	Nylon
120	416 Stainless Steel	354	Injection Molded \#203-40 Santoprene-	542	Nylon
	(Wrought Martensitic)		Duro 40D +/-5; Color: RED	544	Nylon Injection Molded
123	410 Stainless Steel	355	Thermal Plastic	550	Polyethylene
	(Wrought Martensitic)	356	Hytrel	551	Glass Filled Polypropylene
148	Hardcoat Anodized Aluminum	357	Injection Molded Polyurethane	552	Unfilled Polypropylene
149	2024-T4 Aluminum	358	Urethane Rubber	553	Unfilled Polypropylene
150	6061-T6 Aluminum		(Some Applications) (Compression Mold)	555	Polyvinyl Chloride
151	6063-T6 Aluminum	359	Urethane Rubber	556	Black Vinyl
152	2024-T4 Aluminum (2023-T351)	360	Nitrile Rubber. Color coded: RED	557	Conductive Polypropylene
154	Almag 35 Aluminum	361	FDA Accepted Nitrile	558	Conductive HDPE
155	356-T6 Aluminum	363	FKM (Fluorocarbon).	559	Glass-Filled Conductive Polypropylene
156	356-T6 Aluminum		Color coded: YELLOW	570	Rulon II
157	Die Cast Aluminum Alloy \#380	364	E.P.D.M. Rubber. Color coded: BLUE	580	Ryton
158	Aluminum Alloy SR-319	365	Neoprene Rubber.	590	Valox
159	Anodized Aluminum		Color coded: GREEN	591	Nylatron G-S
162	Brass, Yellow, Screw Machine Stock	366	Food Grade Nitrile	592	Nylatron NSB
165	Cast Bronze, 85-5-5-5	368	Food Grade EPDM	600	PTFE (virgin material)
166	Bronze, SAE 660	370	Butyl Rubber. Color coded: BROWN		Tetrafluorocarbon (TFE)
170	Bronze, Bearing Type,	371	Philthane (Tuftane)	601	PTFE (Bronze and moly filled)
	Oil Impregnated	374	Carboxylated Nitrile	602	Filled PTFE
175	Die Cast Zinc	375	Fluorinated Nitrile	603	Blue Gylon

604	PTFE
606	PTFE
607	Envelon
608	Conductive PTFE
610	PTFE Integral Silicon
611	PTFE Integral FKM
632	Neoprene/Hytrel
633	FKM (Fluorocarbon)/PTFE
634	EPDM/PTFE
635	Neoprene/PTFE
637	PTFE, FKM (Fluorocarbon)/PTFE
638	PTFE, Hytrel/PTFE
639	Nitrile/TFE
643	Santoprene/EPDM
644	Santoprene/PTFE
650	Bonded Santoprene and PTFE
654	Santoprene Diaphragm, PTFE Overlay
656	Balls and seals
	Santoprene Diaphragm and
661	Check Balls/EPDM Seats
	EPDM/Santoprene

Delrin and Hytrel are registered tradenames of E.I. DuPont.
Gylon is a registered tradename of Garlock, Inc.
Nylatron is a registered tradename of
Polymer Corp.
Santoprene is a registered tradename of Monsanto Corp.
Rulon II is a registered tradename of
Dixion Industries Corp.
Ryton is a registered tradename of
Phillips Chemical Co.
Valox is a registered tradename of General Electric Co.
Warren Rupp, SANDPIPER, PortaPump,
Tranquilizers and SludgeMaster are registered
tradenames of Warren Rupp, Inc.

TROUBLESHOOTING

Possible Symptoms:

- Pump will not cycle.
- Pump cycles, but produces no flow.
- Pump cycles, but flow rate is unsatisfactory.
- Pump cycle seems unbalanced.
- Pump cycle seems to produce excessive vibration.

What to Check: Excessive suction lift in system.
Corrective Action: For lifts exceeding 20 feet (6 meters), filling the pumping chambers with liquid will prime the pump in most cases.

What to Check: Excessive flooded suction in system.
Corrective Action: For flooded conditions exceeding 10 feet (3 meters) of liquid, install a back pressure device.

What to Check: System head exceeds air supply pressure.
Corrective Action: Increase the inlet air pressure to the pump. Most diaphragm pumps are designed for 1:1 pressure ratio at zero flow.

What to Check: Air supply pressure or volume exceeds system head.
Corrective Action: Decrease inlet air pressure and volume to the pump as calculated on the published PERFORMANCE CURVE. Pump is cavitating the fluid by fast cycling.

What to Check: Undersized suction line.
Corrective Action: Meet or exceed pump connection recommendations shown on the DIMENSIONAL DRAWING.

What to Check: Restricted or undersized air line.
Corrective Action: Install a larger air line and connection. Refer to air inlet recommendations shown in your pump's SERVICE MANUAL.

What to Check: Check ESADS+Plus, the Externally Serviceable Air Distribution System of the pump.
Corrective Action: Disassemble and inspect the main air distribution valve, pilot valve and pilot valve actuators Refer to the parts drawing and air valve section of the SERVICE MANUAL. Check for clogged discharge or closed valve before reassembly.

What to Check: Rigid pipe connections to pump.
Corrective Action: Install flexible connectors and a surge suppressor.

What to Check: Blocked air exhaust muffler.
Corrective Action: Remove muffler screen, clean or de-ice and reinstall. Refer to the Air Exhaust section of your pump SERVICE MANUAL.

What to Check: Pumped fluid in air exhaust muffler.
Corrective Action: Disassemble pump chambers. Inspect for diaphragm rupture or loose diaphragm plate assembly. Refer to the Diaphragm Replacement section of your pump SERVICE MANUAL.

What to Check: Suction side air leakage or air in product.
Corrective Action: Visually inspect all suction side gaskets and pipe connections.

What to Check: Obstructed check valve.
Corrective Action: Disassemble the wet end of the pump and manually dislodge obstruction in the check valve pocket. Refer to the Check Valve section of the pump SERVICE MANUAL for disassembly instructions.

What to Check: Worn or misaligned check valve or check valve seat.
Corrective Action: Inspect check valves and seats for wear and proper seating. Replace if necessary. Refer to Check Valve section of the pump SERVICE MANUAL for disassembly instructions.

What to Check: Blocked suction line. Corrective Action: Remove or flush obstruction. Check and clear all suction screens and strainers.

What to Check: Blocked discharge line.
Corrective Action: Check for obstruction or closed discharge line valves.

What to Check: Blocked pumping chamber.
Corrective Action: Disassemble and inspect the wetted chambers of the pump. Remove or flush any obstructions. Refer to the pump SERVICE MANUAL for disassembly instructions.

What to Check: Entrained air or vapor lock in one or both pumping chambers.
Corrective Action: Purge chambers through tapped chamber vent plugs. PURGING THE CHAMBERS OF AIR CAN BE DANGEROUS! Contact the Warren Rupp Technical Services Department before performing this procedure. A model with top-ported discharge will reduce or eliminate problems with entrained air.

If your pump continues to perform below your expectations, contact your local Warren Rupp Distributor or factory Technical Services Group for a service evaluation.

WARRANTY

Refer to the enclosed Warren Rupp Warranty Certificate.

Composite Repair Parts Drawing

AVAILABLE SERVICE AND CONVERSION KITS

476-217-000
AIR END KIT (For Polypropylene Center Section) Seals, O-rings, Gaskets, Retaining Rings, Air Valve Sleeve \& Spool Set and Pilot Valve Assembly
476-218-000 AIR END KIT (Stroke Indicator Option, Fo Polypropylene Center Section) Seals, O-rings, Gaskets, Retaining Rings, Air Valve, Sleeve \& Spool Set and Pilot Valve Assembly
476-197-354
Santoprene Diaphragms, Santoprene Balls and PTFE Seals
476-197-360
476-197-363
476-197-365 WETTED END KIT
Nitrile Diaphragms, Nitrile Balls and PTFE Seals WETTED END KIT
FKM Diaphragms, FKM Balls and PTFE Seals WETTED END KIT
Neoprene Diaphragms, Neoprene Balls and PTFE Seals
WETTED END KIT
Neoprene Diaphragms, PTFE Overlay Diaphragms, PTFE Balls and PTFE Seals
476-197-654 WETTED END KIT
Santoprene Diaphragms, PTFE Overlay Diaphragms, TFE Balls and TFE Seals WETTED END KIT
One-Piece Bonded Diaphragms,
PTFE Balls, PTFE Seals
476-198-655
WETTED END KIT
Santoprene Diaphragms, PTFE Overlay Diaphragms, PTFE Pumping Diaphragms, PTFE Balls and PTFE Seals
476-198-354
WETTED END KIT
Santoprene Diaphragms, Santoprene Pumping Diaphragms, Santoprene Check Balls and PTFE Seals
476-198-659 WETTED END KIT
One-Piece Bonded Diaphragms, PTFE Pumping
Diaphragms, PTFE Balls, PTFE Seals

ELECTRONIC LEAK DETECTOR KITS

032-037-000
032-045-000

110 VAC / 220 VAC
12-32 VDC

Composite Repair Parts List

ITEM	PART NUMBER	DESCRIPTION
1	031-140-000	Air Valve Assembly
	[. 031-140-001	Air Valve Assembly (No Muffler)
	031-140-002	Air Valve Assembly w/PTFE Coated Hardware
	031-141-000	Air Valve Assembly (No Muffler)
	A. 031-141-001	Air Valve Assembly (No Muffler)
	031-141-002	Air Valve Assembly (No Muffler / PTFE Hardware)
	A 031-146-000	Air Valve Assembly (With Stroke Indicator Option)
	$4.031-147-000$	Air Valve Assembly (No Muffler w/Stroke Indicator)
2	050-042-354	Ball, Check
	050-042-360	Ball, Check
	050-042-363	Ball, Check
	050-042-365	Ball, Check
	050-042-600	Ball, Check
3	095-110-558	Pilot Valve Assembly
4	114-024-551	Intermediate Assembly
	A 114-024-559	Intermediate Assembly
5	132-035-360	Bumper, Diaphragm
6	135-034-506	Bushing, Plunger
7	165-125-551	Cap, Air Inlet
	A 165-125-559	Cap, Air Inlet
8	170-020-115	Capscrew, Hex HD 3/8-16 x 2.00
	170-020-308	Capscrew, Hex HD 3/8-16 x 2.00
9	170-030-115	Capscrew, Hex HD 1/2-13 x 2.00
	170-030-308	Capscrew, Hex HD 1/2-13x 2.00
10	170-052-115	Capscrew, Hex HD 3/8-16x 2.25
	170-052-308	Capscrew, Hex HD 3/8-16x 2.25
11	170-069-115	Capscrew, Hex HD 5/16-18 1.75
	170-069-308	Capscrew, Hex HD 5/16-18x 1.75
12	171-053-115	Capscrew, Soc HD 3/8-16 2.50
13	171-015-115	Capscrew, Soc HD 3/8-16x.88
	171-015-308	Capscrew, Soc HD 3/8-16x.88
14	196-157-520	Chamber, Outer
	A 196-157-521	Chamber, Outer
	196-157-552	Chamber, Outer
	A 196-157-557	Chamber, Outer
15	196-177-551	Chamber, Inner
	A 196-177-559	Chamber, Inner
16	286-107-354	Diaphragm
	286-107-360	Diaphragm
	289-115-000	Diaphragm, One-Piece Bonded
	286-107-363	Diaphragm
	286-107-365	Diaphragm
17	286-108-600	Diaphragm, Overlay
18	312-104-520	Elbow
	A 312-104-521	Elbow
	A 312-104-557	Elbow

Option For Virgin PTFE Equipped Pumps Drawing

S1F SPILL CONTAINMENT REPAIR PARTS LIST FOR VIRGIN PTFE EQUIPPED PUMPS

Item	Part Number	Description	Qty
43	170-114-115	Capscrew, Hex HD 3/8-16 x 4.50 (Replace 170-052-115)	16
	170-114-308	Capscrew, Hex HD 3/8-16 x 4.50 (Replace 170-052-115)	16
44	196-159-552	Chamber, Spill Containment	2
	196-159-520	Chamber, Spill Containment	2
45	286-094-600	Diaphragm, Pumping	2
46	518-180-520	Manifold, Spill Containment (Replace 518-179-520)	2
	518-180-552	Manifold, Spill Containment (Replace 518-179-520)	2
47	538-022-110	Nipple, Pipe	4
	538-022-308	Nipple, Pipe	4
48	560-078-611	O-ring	8
49	618-003-110	Plug, Pipe	4
	618-003-308	Plug, Pipe	4
50	618-025-110	Plug, Boss	4
	618-025-308	Plug, Boss	4
51	618-031-110	Threaded Bushing	4
	618-031-308	Threaded Bushing	4
52	835-005-110	Tee, Pipe	4
	835-005-308	Tee, Pipe	4
53	860-056-606	Tube, Sight	2
54	866-060-110	Connector, Tube	4

*Note: The Diaphragm is to be installed with the convex side facing toward the outer chamber. See drawing.

Note: Pump units with One-Piece Bonded Diaphragm option will not include Overlay Diaphragms (Items 18) and Outer Diaphragm Plate (Item 30).

OPTIONS FOR VIRGIN PTFE EQUIPPED PUMPS CONCEPT

The spill containment option prevents the air end components from being contaminated or damaged when a pumping diaphragm ruptures while pumping caustic or toxic materials. It also helps to protect the environment. With the installation of optional leak detectors (either mechanical or electronic) the diaphragm rupture can be detected. The pump can then be shut down and repaired before any caustic or toxic materials can enter the air end and be exhausted into the surrounding environment.

OPTION DIAPHRAGM SERVICING

To service the diaphragms first shut off the suction, then shut off the discharge lines to the pump. Next shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump. Drain any remaining pumped liquid from the pump. Remove the pump before servicing.

Next, drain the fluid from the spill prevention chambers. This can be done by removing the bottom plug (item 50) from each spill prevention chamber.

After the fluid from the spill prevention chambers has been drained, the wet end components can now be removed. See diaphragm servicing section for detailed instructions. The spill prevention option has two additional virgin PTFE pumping diaphragms (item 45). These diaphragms are installed with the natural convex curve toward the outer chamber (items 14 from the
pump assembly drawing). The molded directional arrows on the diaphragms must point vertically.

FILLING CHAMBERS WITH LIQUID

The chambers are filled with water at the factory.

If you prefer to substitute another liquid, to prevent system contamination consult the factory first to determine compatibility of the substitute with pump construction.

Follow the steps listed here to replace the liquid in the pump after disassembly or liquid loss:

1. Drain the fluid in the spill prevention chambers by removing the bottom two boss plugs (items 50). Replace the bottom two boss plugs after the fluid is drained.
2. Remove the eight capscrews (item 10) fastening the discharge manifold and elbows to the outer chambers (items 15). The discharge manifolds and elbows can now be removed.
3. Remove the top two boss plugs (items 50). The spill prevention chambers are filled through the exposed ports.
4. Apply air pressure to the air distribution valve. Install safety clip (item $1-K$) into the smaller unthreaded hole in one end cap (item 1-E). This locks the valve spool to one side, keeping the pump from shifting.
5. Face the side of the pump with the installed safety clip. If the safety clip is installed in the top end cap, fill the left spill containment chamber. If the safety clip is installed on the bottom end cap, fill the right spill prevention chamber. The volume of fluid is 1198 ml (40.49 fl. oz.).

It is important that the exact amount of fluid is used. Too little or too much fluid causes premature diaphragm failure and erratic pumping.
6. Loosely reinstall one boss plug (item 50) to the filled spill prevention chamber.
7. Shut off air supply. Remove safety clip. Adjust the air line regulator so that air pressure slowly fills the pump. The diaphragm expands, forcing the fluid in the chamber to be slowly displaced. When the pump shifts to the opposite side, quickly install the safety clip.
8. Loosen the top boss plug on the filled chambers. This allows fluid in the chamber to purge trapped air from the chamber. This can be seen by watching the column of fluid in the sight tube. When fluid appears at the top of the port, quickly tighten the boss plug. Fluid loss of 1 to 2 ml is acceptable.
9. Tilt the pump so the uppermost pipe tee (item 52) is in the vertical position. Loosen the pipe plug (item 49). This will allow trapped air to purge through the pipe tee. When fluid appears at the tee opening, reinstall the pipe plug.

NOTE: If all air is not purged using this procedure, remove the check valve components from the top port of the outer chamber (item 15). Apply manual pressure to the pumping diaphragm by inserting a blunt instrument into the top port of the outer chamber and applying pressure to the diaphragm. Loosen the pipe plug (item 49) allowing the fluid to purge any remaining trapped air. Reinstall the plug.
10. Repeat steps 5 through 9 to fill opposite spill prevention chamber.
11. Reinstall the check valve components, discharge manifold and elbows to the pump. The pump is now ready for operation.

4 IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

Option For TPE

Equipped Pumps Drawing

OPTION FOR TPE EQUIPPED PUMPS CONCEPT

The spill containment option prevents the air end components from being contaminated or damaged when a pumping diaphragm ruptures while pumping caustic or toxic materials. It also helps to protect the environment. With the installation of optional leak detectors (either mechanical or electronic) the diaphragm rupture can be detected. The pump can then be shut down and repaired before any caustic or toxic materials can enter the air end and be exhausted into the surrounding environment.

OPTION DIAPHRAGM SERVICING

To service the diaphragms first shut off the suction, then shut off the discharge lines to the pump. Next shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump. Drain any remaining pumped liquid from the pump. Remove the pump before servicing.

Next, drain the fluid from the spill prevention chambers. This can be done by removing the bottom plug (item 50) from each spill prevention chamber.

After the fluid from the spill prevention chambers has been drained, the wet end components can now be removed. See diaphragm servicing section for detailed instructions. The spill prevention option has two additional TPE pumping diaphragms (item 55). These diaphragms are installed with the natural concave curve toward
the outer chamber (items 15 from the pump assembly drawing). The molded directional arrows on the diaphragms must point vertically.

FILLING CHAMBERS WITH LIQUID
 THE CHAMBERS ARE FILLED

 WITH WATER AT THE FACTORY.If you prefer to substitute another liquid, to prevent system contamination consult the factory first to determine compatibility of the substitute with pump construction.

Follow the steps listed here to replace the liquid in the pump after disassembly or liquid loss:

1. Drain the fluid in the spill prevention chambers by removing the bottom two boss plugs (items 50). Replace the bottom two boss plugs after the fluid is drained.
2. Remove the eight capscrews (item 10) fastening the discharge manifold and elbows to the outer chambers (items 15). The discharge manifolds and elbows can now be removed.
3. Remove the top two boss plugs (items 50). The spill prevention chambers are filled through the exposed ports.
4. Apply air pressure to the air distribution valve. Install safety clip (item $1-\mathrm{K}$) into the smaller unthreaded hole in one end cap (item 1-E). This locks the valve spool to one side, keeping the pump from shifting.
5. Face the side of the pump with the installed safety clip. If the safety clip is installed in the top end cap, fill the left spill prevention chamber. If the safety
clip is installed on the bottom end cap, fill the right spill prevention chamber.
6. Loosely reinstall one boss plug (item 50) to the filled spill prevention chamber.
7. Shut off air supply. Remove safety clip. Adjust the air line regulator so that air pressure slowly fills the pump. The diaphragm expands, forcing the fluid in the chamber to be slowly displaced. When the pump shifts to the opposite side, quickly install the safety clip.
8. Loosen the top boss plug on the filled chambers. This allows fluid in the chamber to purge trapped air from the chamber. This can be seen by watching the column of fluid in the sight tube. When fluid appears at the top of the port, quickly tighten the boss plug. Fluid loss of 1 to 2 ml is acceptable.
9. Tilt the pump so the uppermost pipe tee (item 52) is in the vertical position. Loosen the pipe plug (item 49). This will allow trapped air to purge through the pipe tee. When fluid appears at the tee opening, reinstall the pipe plug.

NOTE: If all air is not purged using this procedure, remove the check valve components from the top port of the outer chamber (item 15). Apply manual pressure to the pumping diaphragm by inserting a blunt instrument into the top port of the outer chamber and applying pressure to the diaphragm. Loosen the pipe plug (item 49) allowing the fluid to purge any remaining trapped air. Reinstall the plug.
10. Repeat steps 5 through 9 to fill opposite spill prevention chamber.
11. Reinstall the check valve components, discharge manifold and elbows to the pump. The pump is now ready for operation.

A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

Air Distribution Valve Assembly Drawing

AIR	VALVE ASSEMBLY PARTS LIST		
Item	Part Number	Description	Qty
1	$\mathbf{0 3 1 - 1 4 0 - 0 0 0}$	Air Valve Assembly	1
1-A	$031-139-000$	Sleeve and Spool Set	1
1-B	$095-094-551$	Body, Air Valve	1
1-C	$132-029-552$	Bumper	2
1-D	$165-096-551$	Cap, Muffler	1
1-E	$165-115-552$	Cap, End	2
1-F	$530-028-550$	Muffler	2
1-G	$560-020-360$	O-ring	1
1-H	$675-044-115$	Ring, Retaining	8
1-J	$710-015-115$	Screw, Self-tapping	2

For Pumps with Alternate Mesh, Sound Dampening Mufflers or Piped Exhaust:
1 031-141-000 Air Valve Assembly (Includes all items used on 031-140-000 minus items 1-D, 1-F \& 1-J)

』 AIR VALVE ASSEMBLY PARTS LIST

Item	Part Number	Description	Qty
1	$\mathbf{0 3 1 - 1 4 0 - 0 0 1}$	Air Valve Assembly	$\mathbf{1}$
1-A	$031-139-000$	Sleeve and Spool Set	1
1-B	$095-094-559$	Body, Air Valve	1
1-C	$132-029-552$	Bumper	2
1-D	$165-096-559$	Cap, Muffler	1
1-E	$165-115-552$	Cap, End	2
1-F	$530-028-550$	Muffler	1
1-G	$560-020-360$	O-ring	8
1-H	$675-044-115$	Ring, Retaining	2
1-J	$710-015-115$	Screw, Self-tapping	4

A For Pumps with Alternate Mesh, Muffler or Piped Exhaust:
031-141-001 Air Valve Assembly
Air Valve Assembly
d on 031-140-001 minus
(Includes all items used on 031-140-001 minus items 1-D, 1-F \& 1-J)

AIR DISTRIBUTION VALVE SERVICING

To service the air valve first shut off the compressed air, bleed the pressure from the pump, and disconnect the air supply line from the pump.

Step \#1: See Composite Repair and Parts Drawing.

Using a 5/16" Allen wrench, remove the four hex socket capscrews (item 12) and four flat washers (item 38). Remove the air valve assembly (item 1) from the pump.

Remove and inspect gasket (item 20) for cracks or damage. Replace gasket if needed.

Step \#2: Disassembly of the air valve.

To access the internal air valve components first remove the two retaining rings (item 1-K) from each end of the air valve assembly using clip ring pliers.

Next remove the two end caps (item 1-E). Inspect the o-rings (item 1-G) for cuts or wear. Replace the o-rings if necessary.

Remove the spool (part of item $1-A)$ from the sleeve. Be careful not to scratch or damage the outer diameter of the spool. Wipe spool with a soft cloth and inspect for scratches or wear.

Inspect the inner diameter of the sleeve (part of item 1-A) for dirt, scratches, or other contaminates. Remove the sleeve if needed and replace both the sleeve and spool with a new sleeve and spool set (item 1-A).

Step \#3: Reassembly of the air valve.

Install one bumper, (item 1-C) and one end cap (item 1-E) with an o-ring (item 1-G) into one end of the air valve body (item 1-B). Install one retaining ring (item $1-\mathrm{H}$) into the groove on the same end.

Remove the new sleeve an spool set (item 1-A) from the plastic bag. Carefully remove the spool from the sleeve. Install the six o-rings (item 1G) into the six grooves on the sleeve. Apply a light coating of grease to the o-rings before installing the sleeve into the valve body (item 1-B), align the slots in the sleeve with the slots in the valve body. Insert the spool into the sleeve. Be careful not to scratch or damage the spool during installation. Push the spool in until it touches the bumper on the opposite end.

Install the remaining bumper, end cap with o-ring, and retaining ring.

Fasten the air valve assembly (item 1) and gasket (item 20) to the pump.

Connect the compressed air line to the pump. The pump is now ready for operation.
! IMPORTANT
Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

Air Valve Assembly Drawing With Stroke Indicator Option

. A AIR VALVE ASSEMBLY PARTS LIST

Item	Part Number	Description	Qty
1	031-146-000	Air Valve Assembly	1
1-A	031-143-000	Sleeve and Spool Set	1
1-B	095-094-559	Body, Air Valve	1
1-C	132-029-552	Bumper	2
1-D	165-096-559	Cap, Muffler	1
1-E	165-098-147	Cap, End	2
1-F	530-028-550	Muffler	1
1-G	560-020-360	O-ring	8
1-H	675-044-115	Ring, Retaining	2
1-J	710-015-115	Screw, Self-tapping	4
1-K	210-008-330	Clip, Safety	1
1-M	560-029-360	O-ring	2

A For Pumps with Alternate Mesh, Muffler or Piped Exhaust:

AIR DISTRIBUTION VALVE WITH STROKE INDICATOR OPTION SERVICING

To service the air valve first shut off the compressed air, bleed the pressure from the pump, and disconnect the air supply line from the pump.

Step \#1: See Composite Repair and Parts Drawing.

Using a $5 / 16^{\prime \prime}$ Allen wrench, remove the four hex socket capscrews (item 12) and four flat washers (item 38). Remove the air valve assembly (item 1) from the pump.

Remove and inspect gasket (item 20) for cracks or damage. Replace gasket if needed.

Step \#2: Disassembly of the air valve.

To access the internal air valve components first remove the two retaining rings (item 1-K) from each end of the air valve assembly using clip ring pliers.

Next remove the two end caps (item 1-E). Inspect the o-rings (item 1-G) for cuts or wear. Replace the o-rings if necessary.

Remove the spool (part of item 1A) from the sleeve. Be careful not to scratch or damage the outer diameter of the spool. Wipe spool with a soft cloth and inspect for scratches or wear.

Inspect the inner diameter of the sleeve (part of item 1-A) for dirt, scratches, or other contaminates. Remove the sleeve if needed and replace both the sleeve and spool with a new sleeve and spool set (item 1-A).

Step \#3: Reassembly of the air valve.

Install one bumper (item 1-C) and one end cap (item 1-E) with an o-ring (item $1-\mathrm{G}$) into one end of the air valve body (item 1-B). Install one retaining ring (item $1-\mathrm{H}$) into the groove on the same end. Insert the safety clip (item $1-K$) through the small unthreaded hole in the end cap.

Remove the new sleeve an spool set (item 1-A) from the plastic bag. Carefully remove the spool from the sleeve. Install the six o-rings (item 1G) into the six grooves on the sleeve. Apply a light coating of grease to the o-rings before installing the sleeve into the valve body (item 1-B), align the slots in the sleeve with the slots in the valve body. Insert the spool into the sleeve. Be careful not to scratch or damage the spool during installation. Push the spool in until the pin touches the safety clip on the opposite end.

Install the remaining bumper, end cap with o-ring, and retaining ring.

Fasten the air valve assembly (item 1) and gasket (item 20) to the pump.

Connect the compressed air line to the pump. The pump is now ready for operation.

4 IMPORTANT
Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

Solenoid Shifted Air Valve Drawing

SOLENOID SHIFTED AIR VALVE PARTS LIST

(Includes All Items Used on Composite Repair Parts List Except as Shown)

Item	Part Number	Description	Qty
56	$893-097-000$	Solenoid Valve, NEMA4	1
57	$219-001-000$	Solenoid Coil, 24VDC	1
	$219-004-000$	Solenoid Coil, 24VAC/12VDC	1
	$219-002-000$	Solenoid Coil, 120VAC	1
58	$219-003-000$	Solenoid Coil, 240VAC	1
59	$241-001-000$	Connector, conduit	1
60	$170-029-330$	Capscrew, Hex HD 5/16-18 x 1.50	4

Note: Pumps equipped with Explosion-Proof Solenoid Coils are ATEX compliant.
A.

For Explosion Proof Solenoid Valve
57 219-009-001 219-009-002 219-009-003 219-009-004 219-009-005 219-009-006 Solenoid Coil, 120VAC 60 Hz Solenoid Coil, 240VAC 60 HZ Solenoid Coil, 12VDC Solenoid Coil, 24VDC Solenoid Coil, 110VAC 50 Hz Solenoid Coil, 230VAC 50 Hz

SOLENOID SHIFTED AIR

DISTRIBUTION VALVE OPTION

Warren Rupp's solenoid shifted, air distribution valve option utilizes electrical signals to precisely control your SANDPIPER's speed. The solenoid coil is connected to a customer - supplied control. Compressed air provides the pumping power, while electrical signals control pump speed (pumping rate).

OPERATION

The Solenoid Shifted SANDPIPER has a solenoid operated, air distribution valve in place of the standard SANDPIPER's pilot operated, air distribution valve. Where a pilot valve is normally utilized to cycle the pump's air distribution valve, an electric solenoid is utilized. As the solenoid is powered, one of the pump's air chambers is pressurized while the other chamber is exhausted. When electric power is turned off, the solenoid shifts and the pressurized chamber is exhausted while the other chamber is pressurized. By alternately applying and removing power to the solenoid, the pump cycles much like a standard SANDPIPER pump, with one exception. This option provides a way to precisely control and monitor pump speed.

BEFORE INSTALLATION

Before wiring the solenoid, make certain it is compatible with your system voltage.

Diaphragm Service Drawing, with Overlay

Diaphragm Service Drawing, Non-Overlay

DIAPHRAGM SERVICING

To service the diaphragms first shut off the suction, then shut off the discharge lines to the pump. Shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump. Drain any remaining liquid from the pump.

Step \#1: See the pump composite repair parts drawing, and the diaphragm servicing illustration.

Using a $9 / 16$ " wrench or socket, remove the 16 capscrews (items 8), hex flange nuts and washers that fasten the elbows (items 18 and 19) to the outer chambers (items 14). Remove the elbows with the manifolds and spacers attached.

Step \#2: Removing the outer chambers.

Using a $9 / 16$ " wrench or socket, remove the 16 capscrews (items 10), hex flange nuts and washers that fasten the outer chambers, diaphragms, and inner chambers (items 15) together.

Step \#3: Removing the diaphragm assemblies.

Use a $1^{3 / 8 " ~}(35 \mathrm{~mm})$ wrench or six pointed socket to remove the diaphragm assemblies (outer plate, diaphragm, and inner plate) from the diaphragm rod (item 33) by turning counterclockwise.

Insert a 1/4-20 capscrew or set screw into the smaller tapped hole in the inner diaphragm plate (item 28). Insert the protruding stud and the $1 / 4$ -

20 fastener loosely into a vise. Use a $1^{3 / 8 "}$ wrench or socket to remove the outer diaphragm plate (item 29) by turning counter-clockwise. Inspect the diaphragm (item 116) for cuts, punctures, abrasive wear or chemical attack. Replace the diaphragms if necessary.

Step \#4: Installing the diaphragms. Push the threaded stud of the outer diaphragm plate through the center hole of the diaphragm. Thread the inner plate clockwise onto the stud. Use a torque wrench to tighten the diaphragm assembly together to 27 ft . Lbs. (36.61 Newton meters). Allow a minimum of 15 minutes to elapse after torquing, then re-torque the assembly to compensate for stress relaxation in the clamped assembly.

Step \#5: Installing the diaphragm assemblies to the pump.

Make sure the bumper (item 5) is installed over the diaphragm rod.

Thread the stud of the one diaphragm assembly clockwise into the tapped hole at the end of the diaphragm rod (item 33) until the inner diaphragm plate is flush to the end of the rod. Insert rod into pump.

Align the bolt holes in the diaphragm with the bolt pattern in the inner chamber (item 15). Make sure the molded directional arrows on the diaphragm point vertically.

Fasten the outer chamber (item 14) to the pump, using the capscrews (items 10), hex flange nuts and flat washers.

On the opposite side of the pump, pull the diaphragm rod out as far as possible. Make sure the bumper (item 6) is installed over the diaphragm rod.

Thread the stud of the remaining diaphragm assembly clockwise into the tapped hole at the end of the diaphragm rod (item 33) as far as possible and still allow for alignment of the bolt holes in the diaphragm with the bolt pattern in the inner chamber. The molded directional arrows on the diaphragm must point vertically.

Fasten the remaining outer chamber (item 14) to the pump, using the capscrews (items 10), hex flange nuts and flat washers.

Step \#6: Re-install the elbow/ spacer/manifold assemblies to the pump, using the capscrews (items 8), hex flange nuts and flat washers.

The pump is now ready to be re-installed, connected and returned to operation.

OVERLAY DIAPHRAGM SERVICING

The PTFE overlay diaphragm (item 17) is designed to fit snugly over the exterior of the standard TPE diaphragm (item 16).

The molded directional arrows on the overlay diaphragm must point vertically.

Follow the same procedures described for the standard diaphragm for removal and installation.

4 IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

One-Piece Bonded DIAPHRAGM SERVICING (Bonded PTFE with integral plate)

The one-piece bonded diaphragm (item 17) has a threaded stud installed in the integral plate at the factory. The inner diaphragm plate has a through hole instead of a threaded hole.

Place the inner plate over the diaphragm stud and thread the first diaphragm/inner plate onto the diaphragm rod only until the inner plate contacts the rod. Do not tighten. A small amountof grease may beappliedbetween the inner plate and the diaphragm to facilitate assembly.

Insert the diaphragm/rod assembly into the pump and install the outer chamber. Turn the pump over and thread the second diaphragm / inner plate onto the diaphragm rod. Turn the diaphwwragm until the inner plate contacts the rod and hand tighten the assembly. Continue tightening until the bolt holes align with the inner chamber holes. DO NOT LEAVE THE ASSEMBLY LOOSE.

Pilot Valve Servicing, Assembly Drawing \& Parts List

PILOT VALVE ASSEMBLY PARTS LIST

ITEM	PART NUMBER	DESCRIPTION
3	$095-110-558$	Pilot Valve Assembly
3-A	$095-095-558$	Valve Body
3-B	$755-052-000$	Sleeve (With O-rings)
3-C	$560-033-360$	O-ring (Sleeve)
3-D	$775-055-000$	Spool (With O-rings)
3-E	$560-023-360$	O-ring (Spool)
3-F	$675-037-080$	Retaining Ring

PILOT VALVE SERVICING

To service the pilot valve first shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump.

STEP \#1: See pump assembly drawing.

Using a 1/2" wrench or socket, remove the four capscrews (item 11). Remove the air inlet cap (item 7) and air inlet gasket (item 22). The pilot valve assembly (item 3) can now be removed for inspection and service.

STEP \#2: Disassembly of the pilot valve.

Remove the pilot valve spool (item 3-D). Wipe clean and inspect spool and o-rings for dirt, cuts or wear. Replace the o-rings and spool if necessary.

Remove the retaining ring (item $3-F)$ from the end of the sleeve (item $3-B)$ and remove the sleeve from the valve body (item 3-A). Wipe clean and inspect sleeve and o-rings for dirt, cuts or wear. Replace the o-rings and sleeve if necessary.

STEP \#3: Re-assembly of the pilot valve.

Generously lubricate outside diameter of the sleeve and o-rings. Then carefully insert sleeve into valve body. Take CAUTION when inserting sleeve, not to shear any o-rings. Install retaining ring to sleeve. Generously lubricate outside diameter of spool and o-rings. Then carefully insert spool into sleeve. Take CAUTION when inserting spool, not to shear any o-rings. Use BP-LS-EP-2 multipurpose grease, or equivalent.

STEP \#4: Re-install the pilot valve assembly into the intermediate.

Be careful to align the ends of the pilot valve stem between the plunger pins when inserting the pilot valve into the cavity of the intermediate.

Re-install the gasket, air inlet cap and capscrews. Connect the air supply to the pump. The pump is now ready for operation.

PUMPING HAZARDOUS LIQUIDS

When a diaphragm fails, the pumped liquid or fumes enter the air end of the pump. Fumes are exhausted into the surrounding environment. When pumping hazardous or toxic materials, the exhaust air must be piped to an appropriate area for safe disposal. See illustration \#1 at right.

This pump can be submerged if the pump materials of construction are compatible with the liquid being pumped. The air exhaust must be piped above the liquid level. See illustration \#2 at right. Piping used for the air exhaust must not be smaller than 1" (2.54 cm) diameter. Reducing the pipe size will restrict air flow and reduce pump performance. When the pumped product source is at a higher level than the pump (flooded suction condition), pipe the exhaust higher than the product source to prevent siphoning spills. See illustration \#3 at right.

CONVERTING THE PUMP FOR PIPING THE EXHAUST AIR

The following steps are necessary to convert the pump to pipe the exhaust air away from the pump.

Use a \#8 Torx or flat screwdriver to remove the four self-tapping screws (item 1-L).

Remove the muffler cap and muffler (items 1-E and 1-G). The 1" NPT molded threads in the air distribution valve body (item 1-B).

Piping or hose may now be installed.

IMPORTANT INSTALLATION NOTE:

The manufacturer recommends installing a flexible hose or connection between the pump and any rigid plumbing. This reduces stresses on the molded plastic threads of the air exhaust port. Failure to do so may result in damage to the air distribution valve body.

Any piping or hose connected to the pump's air exhaust port must be physically supported. Failure to support these connections could also result in damage to the air distribution valve body.

Exhaust Conversion Drawing

CONVERTED EXHAUST ILLUSTRATION

MODULAR CHECK VALVE SERVICING

Before servicing the check valves, first shut off the suction line and then the discharge line to the pump. Next, shut off the compressed air supply, bleed air pressure from the pump, and disconnect the air supply line from the pump. Drain any remaining fluid from the pump. The pump can now be removed for service.

To access the modular check valve, remove the elbows (items 18 and 19 from pump composite repair parts drawing). Use a 9/16" wrench or socket to remove the fasteners. Once the elbows are removed, the modular check valves can be seen in the cavities of the outer chamber (items 14).

Next remove the check valve seal (item 36). Inspect the seal for cuts or pinched areas. Replace seal as needed.

Disassemble the component parts of each modular check valve. Inspect the check valve retainer (item 31) for cuts, abrasive wear, or embedded materials. Replace as needed.

Inspect the check balls (items 2) for wear, abrasion, or cuts on the spherical surface. The check valve seats (items 37) should be inspected for cuts, abrasive wear, or embedded material on the surfaces of both the external and internal chamfers. The spherical surface of the check balls must seat flush to the surface of the inner chamfer on the check valve seats for the pump to operate to peak efficiency. Replace any worn or damaged parts as necessary.

Remove the remaining check valve seal (item 36). Inspect the seal for cuts or pinched areas. Replace seal as needed.

Re-assemble the modular check valve. The seat should fit snugly into the retainer.

Place a check valve seal (item 36) into the cavity of the outer chamber (item 14). Make sure the chamfer side of the seal faces out. Insert the modular check valve into the outer chamber with the retainer facing up. Install a check valve seal (item 36). Make sure the chamfer side of the seal faces the chamfer on the check valve seat or retainer.

The pump can now reassembled, reconnected and returned to operation.

Modular Check Valve Drawing

Dual Port Option Drawing

DUAL PORTING OPTIONS

Several dual porting options are possible. The pump can be converted to a dual port arrangement on both the suction and the discharge ends. The porting can be configured to a single suction and a dual discharge. The porting can be changed to a dual suction and a single discharge.

The above changes are possible because the porting flange of the elbows (items 18 and 19) are designed to mate with standard 125\# ANSI style 4-bolt, 1 " pipe flanges.

DUAL PORTING OF BOTH SUCTION

 AND DISCHARGE ENDS OF THE PUMPConverting the pump from the standard single suction and discharge porting configuration to dual porting at each end is easy. Simply remove the manifold seals, spacers, and manifolds (items 35 and 23 from pump assembly drawing) from the pump.

The discharge and suction elbows can be rotated at 90° increments (see arrows and optional positioning in the Dual Porting Drawing.

SINGLE PORTING OF THE SUCTION AND DUAL PORTING OF THE PUMP DISCHARGE

To convert the pump from the standard single suction and single discharge porting configuration to a dual discharge porting arrangement remove the only the discharge manifolds, spacers, and manifold seals. Position the discharge elbows in the desired direction at 90° increments. (See arrows and optional positioning in the Dual Porting Drawing.)

DUAL PORTING OF THE SUCTION AND SINGLE PORTING OF THE PUMP DISCHARGE

To convert the pump from the standard single suction and single discharge porting configuration to a dual suction porting arrangement remove the only the suction (bottom) manifolds, spacers, and manifold seals.

Position the suction elbows in the desired direction at 90° increments. (See arrows and optional positioning in the Dual Porting Drawing.)

Leak Detection Options Drawing

LEAK DETECTION OPTION A (ELECTRONIC)

Follow instructions found elsewhere in this manual, "Filling the Spill Containment Chambers" when installing leak detectors.

\section*{Electronic Leak Detector Installation
 | Kit 032-037-000 | 100VAC | 50 Hz |
| :--- | :--- | :--- |
| | or 110-120VAC | $50 / 60 \mathrm{~Hz}$ |
| | or 220-240VAC | $50 / 60 \mathrm{~Hz}$ |
 Kit 032-045-000 or 220-240VAC $50 / 60 \mathrm{~Hz}$} ¼" NPT pipe plug on the visual sight tube (item 53). Insert leak detector into the $1 / 4$ " pipe tee (item 52).

Leak Detection Option B (Mechanical)

Follow instructions found elsewhere in this manual, "Filling the Spill Containment Chambers" when installing leak detectors.

Mechanical Leak Detector Installation

Kit 031-023-110
To install mechanical leak detectors, remove the bottom $1 / 4$ " NPT pipe plug on the visual sight tube (item 53). Insert leak detector into the $1 / 4$ " pipe tee (item 52).

Pulse Output Kit Drawing

PULSE OUTPUT KIT OPTION

This pump can be fitted with a Pulse Output Kit. This converts the mechanical strokes of the pump to an electrical signal which interfaces with the Stroke Counter/ Batch Controller or user control devices such as a PLC.

The Pulse Output Kits mount directly onto the Muffler Cap on the Air Distribution Valve Assembly or onto the air valve and senses each stroke of the main spool.

Consult the factory for further information and availability.

Pulse Output Kits

475-244-001
10-30 VDC
475-244-002
110/220 VAC
475-244-003
Intrinsically Safe,10-30VDC, 110VAC and 220 VAC

Optional Muffler Configurations, Drawing

OPTION 0

530-028-550 Integral Muffler uses (1) Cap and (4) 710-015-115 Self Tapping Screw to hold it in place.

OPTION 1

530-027-000 Sound Dampening Muffler screws directly into the Air Valve body. This muffler is equipped with a porous plastic element.

OPTION 2

530-010-000 Mesh Muffler screws directly into the Air Valve Body. This muffler is equipped with a metal element.
!
OPTION 6
530-033-000 Metal Muffler screws directly into the Air Body.

〔x A ATEX Compliant

Option 6

Grounding The Pump

To be fully groundable, the pumps must be ATEX
Compliant. Refer to pump data sheet for ordering.

This optional 8 foot long (244 centimeters) Ground
The other end is installed to a true earth ground.
 Strap (920-025-000) is available for easy ground connection.

To reduce the risk of static electrical sparking, this pump must be grounded. Check the local electrical code for detailed grounding instruction and the type of equipment required.

$!$ WARNING

Take action to prevent static sparking. Fire or explosion can result, especially when handling flammable liquids. The pump, piping, valves, containers or other miscellaneous equipment must be grounded.

[^0]: WARRENRUPP, INC. • A Unit of IDEX Corporation • P.O.Box 1568, Mansfield, Ohio 44901-1568 USA • Telephone (419) 524-8388• Fax (419) 522-7867 • www.warrenrupp.com s1fnmdl3sm-REV0508
 ©Copyright 2007 Warren Rupp, Inc. All rights reserved.

